簡易檢索 / 詳目顯示

研究生: 魏天韻
Wei, Tien-Yun
論文名稱: 鍺基光電導太赫茲輻射源之研究
A Study of Germanium Photoconductive Terahertz Source
指導教授: 楊尚樺
Yang, Shang-Hua
口試委員: 潘犀靈
張書維
陳家祥
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 66
中文關鍵詞: 太赫茲光電導太赫茲輻射源
外文關鍵詞: Terahertz, Germanium, Photoconductive Terahertz Source
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代社會依賴無線網路傳輸資訊的需求日益上升,然而現今無線通訊頻段已十分擁擠,為追求更快的無線傳輸率並解決無線傳輸通道擁塞的問題,高頻段之無線通訊系統有充分被研究之價值。太赫茲段介於傳統微波通訊波段以及紅外線波段之間,由於此頻段尚未列入通訊系統規範,且因高頻特性使其可乘載之訊號比傳統無線微波通訊更多,與鄰近之更高頻的紅外線波段相比,太赫茲具有更長遠之無線傳輸距離,然而不同於已成熟發展之微波通訊以及光纖通訊,目前仍缺乏有實用價值的太赫茲輻射源。
    本研究著重在開發鍺基太赫茲輻射源,光電導太赫茲輻射源為產生兆赫輻射的元件種類之一,其能實現可攜式、高功率太赫茲通訊元件,傳統光電導太赫茲輻射源受限於低量子轉換效率,而光柵結構可大幅提高轉換效率,另外鍺基半導體能與1550 nm光通訊波段結合,相較於銦砷化鎵光電導兆赫輻射源,鍺基半導體在製程上能與現有電子元件整合,並且在輻射頻譜上能夠涵蓋更高頻之波段範圍。由於鍺為間接能隙半導體,載子生命週期約為數百微秒,遠大於直接能隙半導體,因此難以用脈衝重複率高的飛秒雷射或是連續波雷射激發,我們利用氧氣與氬氣對鍺半導體表面進行物理性轟擊,破壞表面晶格結構,達到降低載子生命週期的效果,並實現鍺基光電導太赫茲輻射源。


    Data transmission relies on wireless data transfer is in an upward trend in modern society. However, it is very crowded in the channels of wireless communication bands of nowadays. In order to pursue higher data transfer rate and find out the solution for wireless communication channel congestion, it is worth doing research on wireless communication in high frequency band. Terahertz (THz) band is between microwave and infrared; since this frequency band has not allocated, and the high carrier frequency allows it carriers more information than microwave communication. Moreover, THz wave is able to transmit in a longer distance compare to infrared. In comparison with well-developed microwave communication and fiber-optic communication, a lack of practical THz source limits the development of THz communication.
    This thesis focuses on the development of Ge photoconductive THz source. Photoconductive THz source is a kind of devices for THz wave generation. It is able to realize portable and high power THz source. Conventional photoconductive THz source is limited by the low conversion efficiency, and the grating structure is able to enhance the conversion efficiency. By use of Ge as the photoconductor allows the device to combine with 1550 nm optical communication system. Compared to InGaAs photoconductive THz source, the fabrication process of Ge photoconductive THz source is able to combine with modern complementary metal oxide semiconductor (CMOS) fabrication process. Moreover, it covers the wider bandwidth and it can reach higher frequency of THz radiation. Nevertheless, Ge is a kind of indirect band gap semiconductor, the carrier lifetime is around several hundred microsecond, which is much greater than the direct band gap semiconductor, and it is hard to generate THz radiation by using high repetition rate femtosecond laser and continuous wave (CW) laser as the pumping source. O2 and Ar plasma are used to bombard the surface of Ge, destroying the crystal quality of Ge to shorten the carrier lifetime. The device after carrier lifetime shortened treatment is discussed analytically in this thesis.

    摘要 i Abstract ii Acknowledgements iv Table of Contents v Lists of Tables vii Lists of Figures viii CHAPTER I 1 Introduction 1 1.1 Motivation 1 1.2 Terahertz Communications 2 1.3 Terahertz Sources 3 1.4 Photoconductive Terahertz Sources 4 1.5 Thesis Overview 6 CHAPTER II 8 Working Principle of PCA with Plasmonic Contact Electrode 8 2.1 Analytical Model and Structure of Photoconductive THz Source 8 2.2 Anti-reflection Coating 11 2.3 Plasmonic Contact Electrode with Periodic Gratings 13 CHAPTER III 17 Comparison of Intrinsic Characteristics Between Ge and InGaAs 17 3.1 Overview 17 3.2 Electrical Properties 18 3.3 Optical Properties 20 3.4 Thermal Properties 22 CHAPTER IV 23 Antenna Design and Simulation Results of Ge Photoconductive THz Source 23 4.1 Antenna Design 23 4.2 Antenna Performance Simulation Results 26 4.3 Simulation Results of Plasmonic Contact Electrode by COMSOL Multiphysics 31 CHAPTER V 38 Fabrication Recipes and Steps of Ge Photoconductive THz Source 38 5.1 Steps and Recipes 38 5.2 Results of Fabrication 41 5.3 Wire Bonding and Device Package 43 CHAPTER VI 45 The Measurement Results of Ge Photoconductive THz Source 45 6.1 Terahertz Time Domain Spectroscopy System 45 6.2 Asynchronous Optical Sampling System 46 6.3 THz Time Domain and Frequency Domain Signal 48 6.4 Characterization of Electrical Property of Ge Photoconductive THz Source 56 CHAPTER VII 61 Conclusion and Future Research 61 7.1 Conclusion 61 7.2 Future Work 61 Reference 63

    [1] https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html#_Toc532256790
    [2] H. Eisele and G. I. Haddad, “Two-Terminal Millimeter-Wave Sources”, IEEE Trans. Microwave Theory Tech., pp. 739-746, 1998
    [3] J. Faist, et al., “Quantum cascade laser”, Science, pp. 553-555, 1994
    [4] I. Hosako and N. Hiromoto, “Research and developments on p-type Germanium lasers in the frequency range from 0.1 terahertz to few terahertz”, Journal of the Communications Research Laboratory, pp. 81-96, 2002
    [5] P. Tan, et al., “Terahertz radiation sources based on free electron lasers and their applications”, Sci. China Inf. Sci., pp. 1-15, 2012
    [6] A. Singh, et al., “Gapless Broadband Terahertz Emission from a Germanium Photoconductive Emitter”, ACS Photonics, pp. 2718-2733, 2018
    [7] J. Wang and S. Lee, “Ge-Photodetectors for Si-Based Optoelectronic Integration”, Sensors, pp. 696-718, 2011
    [8] J. Liu, “Monolithically Integrated Ge-on-Si Active Photonics”, Photonics, pp. 162-197, 2014
    [9] A. Singh, et al., “Up to 70 THz bandwidth from implanted Ge photoconductive antenna excited by a fibre laser”, arXiv, 2019
    [10] Z. Piao, M. Tani, and K. Sakai, “Carrier Dynamics and Terahertz Radiation in Photoconductive Antennas”, Appl. Phys Lett., pp. 96-100, 2000
    [11] L. Duvillaret, et al., “Analytical Modeling and Optimization of Terahertz Time-Domain Spectroscopy Experiments Using Photoswitches as Antennas”, IEEE J. Select. Topics Quantum Electron., pp. 615-623, 2001
    [12] M. K. Hedayati and M. Elbahri, “Antireflective Coatings: Conventional Stacking Layers and Ultrathin Plasmonic Metasurfaces, A Mini-Review”, Materials, pp. 1-22, 2016
    [13] C. W. Berry, et al., “Significant performance enhancement in photoconductive terahertz optoelectronicsby incorporating plasmonic contact electrodes”, Nature Communications, pp. 1-10, 2013
    [14] C. Genet and T. W. Ebbesen, “Light in tiny holes”, Nature Reviews, pp. 39-46, 2007
    [15] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics”, Nature insight review articles, pp. 824-830, 2003
    [16] A. Takazato, et al., “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 µm pulse excitation”, Appl. Phys Lett., pp. 011102, 2007
    [17] C. W. Berry, et al., “High power terahertz generation using 1550 nm plasmonic photomixers”, Appl. Phys Lett., pp. 011121, 2014
    [18] N. Vieweg, et al., “Terahertz-time domain spectrometer with 90 dB peak dynamic range”, J Infrared Milli Terahz Waves, 2014
    [19] A. J. Deninger, et al., “2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers”, J Infrared Milli Terahz Waves, pp. 269-277, 2015
    [20] http://www.ioffe.ru/SVA/NSM/Semicond/
    [21] L. Tian, et al., “Thermal characteristic of dark resistivity of InGaAs photoconductive semiconductor switches”, J Mater Sci: Mater Electron, 2019
    [22] S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y”, Journal of Appl. Phys., pp. 6030-6040, 1989
    [23] O. I. Dosunmu, et al., “Germanium on double-SOI photodetectors for 1550 nm operation”, Conference Proceedings-Lasers and Electro-Optics Society Annual Meeting-LEOS. 2., pp. 853 – 854, 2003
    [24] F. J. Gonzalez, and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas”, Infrared Phys. Tech., pp. 418-428, 2005
    [25] M. Rahim, et al., “Bow-tie microstrip antenna design,” in Proc. 13th IEEE Int. Conf. on Networks, Jointly Held With the IEEE 7th Malaysia Int. Conf. on Communication, pp. 17–20, 2005
    [26] K. Loi, S. Uysal and M. Leong, "Design of a wideband microstrip bowtie patch antenna," in IEE Proc -Microw. Antennas Propag, pp. 137-140, 1998
    [27] T. Nagatsuma, et al., “Advances in terahertz communications accelerated by photonics”, Nature Photonics, pp. 371-379, 2016
    [28] N. Fukuoka and K. Tanabe, “Lightning-Rod Effect of Plasmonic Field Enhancement on Hydrogen-Absorbing Transition Metals”, Nanomaterials, pp. 1-9, 2019
    [29] S. Massenot, et al., “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material”, Optics Communications, pp. 318-323, 2007
    [30] J. Pan, et al., “Wire Bonding Challenges in Optoelectronics Packaging”, Society of Manufacturing Engineers, pp. 1-8, 2000
    [31] P. S. Chauhan, et al., “Copper Wire Bonding”, Springer, New York, 2014
    [32] https://www.we-online.com/web/en/leiterplatten/produkte_/bonden/verfahren/Verfahren.php
    [33] J. Neu, et al., “Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS)”, Appl. Phys Lett., pp. 231101, 2018
    [34] C. Janke, et al., “Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors”, Optics Letters, pp. 1405-1407, 2005
    [35] T. Yasui, et al., “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition”, Appl. Phys Lett., pp. 061101, 2005
    [36] E. Gaubas, et al., “Dependence of carrier lifetime in germanium on resistivity and carrier injection level”, Appl. Phys Lett., pp. 142106, 2006
    [37] A. Mogro-Campero and R. P. Love , “Carrier Lifetime Reduction by Argon Implantation into Silicon”, J. Electrochem. Soc., pp. 655-660, 1984
    [38] A. Singh, et al., “Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection”, Optics Express, pp. 6656-6661, 2015
    [39] A. Singh, et al., “Highly Efficient and Electrically Robust Carbon Irradiated SI-GaAs Based Photoconductive THz Emitters”, Appl. Phys Lett., pp. 063501, 2014
    [40] Z. Paio, et al., “Carrier Dynamics and Terahertz Radiation in Photoconductive Antennas”, Jpn. J. Appl. Phys., pp. 96-100, 2000
    [41] Y.J, Chiu, et al., “High-speed low-temperature-grown GaAs p-i-n traveling-wave photodetector”, IEEE Photonics Technology Letters, pp. 1012-1014, 1998
    [42] G. M. Pharr, et al., “Electrical resistance of metallic contacts on silicon and germanium during indentation”, Journal of Materials Research, pp. 961-972, 1992
    [43] G. C. Loata, et al., “Radiation field screening in photoconductive antennae studied via pulsed terahertz emission spectroscopy”, Appl. Phys Lett., pp. 232506, 2007
    [44] K. Liu, et al., “GaSe crystals for broadband terahertz wave detection”, Appl. Phys Lett., pp. 863-865, 2004
    [45] C. Kubler, et al., “Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared”, Appl. Phys Lett., pp.3360-3362, 2004

    QR CODE