研究生: |
盧俊良 Lu, Chun-Liang |
---|---|
論文名稱: |
光電式產生與接收W波段啾頻毫米波訊號之研究 Photonic Generation and Detection of Chirped Millimeter-Wave Signal by a W-Band Photonic Transmitter |
指導教授: |
潘犀靈
Pan, Ci-Ling |
口試委員: |
趙如蘋
Pan, Ru-Pin 黃承彬 Huang, Chen-Bin |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 114 |
中文關鍵詞: | 傅立葉轉換脈衝塑形技術 、光電毫米波發射器 、啾頻毫米波 |
外文關鍵詞: | Fourier Transform Pulse Shaping Technology, Photonic Transmitter, Chirped Millimeter-Wave |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主題是應用傅立葉轉換脈衝塑形技術以及光電毫米波發射器研究產生與接收啾頻毫米波。我們利用時域頻域映射轉換的基本概念產生及控制啾頻毫米波訊號。實驗系統中的關鍵元件之一為光電式毫米波發射器,偵測是使用兆赫時析光譜量測。此量測系統的雷射光源是中心波長為1560奈米的飛秒鎖模摻鉺光纖雷射。
此論文中提出了兩種頻率調變方式所產生的毫米波訊號。其一為線性啾頻毫米波。我們設計光譜的包絡曲線為高斯曲線,則產生的線性啾頻毫米波波形之包絡曲線亦為高斯曲線並且時間頻寬乘積為6.03。其二為階梯形啾頻毫米波。我們增加了塑形脈衝的數量並時間頻寬乘積可達到32.17。另外,其模擬結果與實驗結果十分相似。由實驗結果可知,經由合適的光譜設計,我們可以任意調控毫米波時域訊號的振幅與頻率。由於良好的頻率調控性,此方法可以有效的增強毫米波脈衝壓縮雷達系統的時間解析度。
We study chirped millimeter-wave (MMW) generation and detection using a photonic transmitter (PT) and the Fourier-transform pulse shaping technique. Utilizing the basic concepts of frequency-to-time mapping, we explore generation and control of the effects of chirped MMW. Experimentally, one of the key components is a W-band PT. We achieved coherent detection of the n MMW signal by the THz-time domain spectroscopic (THz-TDS) technique. The excitation and probing light is a mode-lock Er:doped fiber laser with a center wavelength of 1560nm.
In this thesis, we proposed and demonstrated two different kinds of frequency -modulated MMW signal. The first one is a linearly chirped MMW waveform. We design the envelope to be a Gaussian-like curve in the optical spectra of the excitation laser, the envelope curve of the generated linearly chirped MMW waveform is also a Gaussian-like curve. The time-bandwidth product is 6.03. The second one is the step chirped MMW waveform. We enhance the number of shaped pulses and the time-bandwidth product achieved to 32.17. In the mean time, we setup and demonstrate a mathematical simulation model. The simulation results agree with the experimental results. As shown the the experimental results, we can arbitrarily tune the amplitudes and frequencies of the time domain MMW waveform through suitable design of the optical spectrum of the exciting light. Further, this method can increase the time resolution of the MMW pulse compression radar system.
[1]A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron., vol. 19, no.3, pp. 161–237, Jan. 1995.
[2]J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultra-wideband signals,” J. Lightw. Technol., vol. 25, no. 11, pp. 3219–3235, Nov. 2007.
[3]J. Chou, Y. Han, and fB. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett., vol. 15, no. 4, pp. 581–583, Apr. 2003.
[4]J. W. Shi, F. M. Kuo, Tzihong Chiueh, H. F. Teng, H. J. Tsai, N. W. Chen, M. L. Wu, "Photonic generation of millimeter-wave white-light at W-band using a very broadband and high-power photonic emitter," IEEE Photonics Technology Letters. vol. 22, no 11, pp.847–849,June 2010.
[5]H. J. Song, N. Shimizu, T. Furuta, K. Suizu, H. Ito and T. Nagatsuma, "Broadband-frequency-tunable sub-terahertz wave generation using an optical comb, AWGs, optical switches, and a uni-traveling carrier photodiode for spectroscopic applications,” Journal of Lightwave Technology, vol. 26, no. 15, pp. 2449-2459,August 2008.
[6]S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photonics, vol. 4, no. 11, pp. 760-766, November 2010
[7]M. Lazarus, “The great spectrum famine,” IEEE Spectrum, vol. 47 no. 10, pp. 26-31, Oct. 2010
[8]Y. Kado, M. Shinagawa, H. J. Song and T. Nagatsuma, et al. “Close proximity wireless communication technologies using short waves, microwaves, and sub-terahertz waves,” Progress in Electromagnetics Research Symposium Proceedings. , pp. 777-782, Xi'an, China, March 22–26, 2010
[9]J. Wells, “Faster than fiber: the future of multi-Gs/s wireless,” IEEE Microwave Mag. , vol.10, no.3, pp.104-112, May 2009.
[10]T. Uno and H. Tabata, “In situ measurement of combustion gas using terahertz time domain spectroscopy setup for gas phase spectroscopy and measurement of solid sample,” Jpn. J. Appl. Phys., vol. 49, no.4, pp. 04DL17 1-7, 2010.
[11]A. W. Rihaczek, “Principles of high-resolution radar,” Norwood, MA: Artech House, 1996.
[12]I. S. Lin, J. D. McKinney and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 4, pp.226-228, April 2005
[13]J. W. Shi, C. B. Huang and C. L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Materials, vol. 3, pp.41-48, April 2011.
[14]J. A. Wells, “Multigigabit wireless technology at 70, 80 and 90 GHz,” R. F. Des., pp. 50–58, May 2006,
[15]V. Dyadyuk, J. Bunton, J. Pathikulangara, R. Kendall, O. Sevimli, L. Stokes, and D. Abbott, “A multi-gigabit MM-wave communication system with improved spectral efficiency,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 12, pp. 2813–2821, Dec. 2007.
[16]A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, “120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 5, pp. 1937–1044, May 2006.
[17] “Wireless at fiber speeds: new millimeter-wave technology sends data at 10 Gbits/s,” Available: http://www.technologyreview.com/ communications/21464, May 2012.
[18]F. M. Kuo, C. B. Huang, J. W. Shi, N. W. Chen, H. P. Chuang, J. E. Bowers and C.L. Pan,” Remotely up-converted 20-Gbit/s error-free wireless on–off-keying data transmission at W-band using an ultra-wideband photonic transmitter-mixer,” IEEE Photonics Journal, vol. 3, no 2, pp. 209-219, April 2011
[19]M. Marcus and B. Pattan, “Millimeter-wave propagation: spectrum management implications,” IEEE Microwave Mag., vol. 6, no. 2, pp. 54–62, August 2005.
[20]“Generating advanced radar signals using arbitrary waveform generators,” Tektronix, Available: http://www.tek.com
[21]Y. Dai and J. P. Yao, “Microwave pulse phase encoding using a photonic microwave delay-line filter,” Opt. Lett., vol. 32, no. 24, pp. 3486–3488, Dec. 2007.
[22]H. Chi and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 371–373, May 2008.
[23]Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE photonic technology letters, vol. 23, no. 11, pp 712-714, June , 2011
[24]R. Skaug and J. F. Hjelmstad, “Spread spectrum in communication,” London, U.K., 1985
[25] M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCP),” IEEE Trans. Biomed. Eng., vol. 47, no. 5, pp. 690-699, 2000.
[26]H. D. Griffiths and W. J. Bradford, “Digital generation of high time-bandwidth product linear FM waveforms for radar altimeters,” Proc. Inst. Elect. Eng., vol. 139, no. 2 , pp. 160–169, Apr. 1992.
[27]H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 6, pp. 431–433, Jun. 2005
[28]A. Y. Nashashibi, K. Sarabandi, P. Frantzis, R. D. De Roo, and F. T. Ulaby, “An ultrafast wide-band millimeter-wave polarimetric radar for remote sensing applications,” IEEE Trans. Geoscience Remote Sensing, vol. 40, no. 8, pp. 1777-1786, 2002.
[29]J. Yao, “Photonic generation of microwave arbitrary waveforms,” Optical Communication., vol. 284, no. 15, pp. 3723-3736, 2011.
[30]C. Wang and J. Yao, "Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating," IEEE Trans. on micro. theory and techniques, vol. 56, no. 2, pp. 542-553, February 2008.
[31]M. Li, C. Wang, W. Li and J. Yao, “An unbalanced temporal pulse-shaping system for chirped microwave waveform generation,” IEEE Trans. on micro. theory and techniques, vol. 58, no. 11, pp. 2968-2975, November 2010.
[32]C. Wang and J. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating.” Journal of lightwave technology, vol. 28, no. 11, pp. 1652-1660, June 2010.
[33] M. Li and J. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically pumped linearly chirped fiber Bragg grating,” IEEE Trans. on micro. theory and techniques, vol. 59, no. 12, pp. 3531-3537 ,December 2011.
[34] J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics Journal, vol. 4, no. 1, pp 215-223 ,February 2012
[35]Stephen E. Ralph and D. Grischkowsky, “THz spectroscopy and source characterization by optoelectronic interferometry,” Appl. Phys. Lett. vol. 60, no. 9, pp. 1070-1072, March 1992.
[36] T. Nagatsuma, “Generating millimeter and terahertz waves,” IEEE microwave magazine, vol.10, no. 4, pp.64-74, June 2009.
[37] A. Hirata, M. Harada, K. Sato, and T. Nagatsuma, “Low-cost millimeter-wave photonic techniques for Gigabit/s wireless link,” IEICE Trans. Electron., vol. E86-C, no. 7, pp. 1123–1128, July 2003.
[38] T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications”, Laser & Photon. Rev. vol. 3, no. 1–2, pp. 123–137, February 2009.
[39]K. Kato,” Ultrawide-band/high-frequency photodetectors,” IEEE Trans. Microwave Theory Tech. vol. 47, no. 7,pp.1265, July 1999.
[40]D. A. Tulchinsky, X. Li, N. Li, S. Demiguel, J. C. Campbell and K. J. Williams, ”High-saturation current wide-bandwidth photodetectors”, J. Lightwave Technol, vol. 10, no. 4, pp. 702-708, July 2004.
[41]R. Sankaralingam, and P. Fay, “Drift-enhanced dual-absorption PIN photodiodes,” IEEE Photon. Technol. Lett., vol. 17, no. 7, pp. 1513–1515, July. 2005.
[42]X. Li, N. Li, S. Demiguel, X. Zheng, J. C. Campbell, H. H. Tan, and C. Jagadish, “A partially depleted absorber photodiode with graded doping injection regions,” IEEE Photon. Technol. Lett., vol. 16, no. 10, pp. 2326–2328, Oct. 2004.
[43]T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron., pp.83–87, 1997.
[44]T. Ishibashi, “High speed heterostructure devices”, Semiconductors and Semimetals. San Diego, CA: Academic, vol. 41, ch. 5, pp. 333, 1994.
[45]H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “Zero-bias high-speed and high-output-voltage operation of cascade-twin uni-travelling-carrier photodiode”, Electron. Lett., vol. 36, no. 24, pp. 2034–2036, Nov. 2000.
[46]N. Shimizu, N.Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150 GHz,” IEEE Photon. Technol. Lett., vol. 10, no. 3, pp. 412–414, Mar. 1998.
[47]Y. H. Wu, “High-speed and high-power near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) for the application of W-band radio-over-fiber (ROF) communication system,” master thesis, NCU, September .2008
[48]T. Ishibashi, “Nonequilibrium electron transport in HBTs,” IEEE Trans. Electron Devices, vol. 48, no.11, pp. 2595–2605, Nov. 2001.
[49]S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett., vol. 15, no. 12, pp. 1761–1763, Dec. 2003.
[50]S. C. Chen, “High–power and ultra–wide bandwidth photonic transmitter at W–band(75–110GHz),” master thesis , NCTU, April 2010
[51]A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. of Lightwave Technol., vol. 21, no. 10, pp. 2145–2153, Oct., 2003.
[52]J.-H. Seo, C.-S. Choi, W.-Y. Choi, Y.-S. Kang, Y.-D. Chung, and J. Kim “Remote optoelectronic frequency down-conversion using 60-GHz optical heterodyne signals and an electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp.1073-1075, May, 2005.
[53]F. M. Kuo, J.W. Shi, et al.” W-Band wireless data transmission by the integration of a near-ballistic uni-traveling-carrier photodiode with a horn antenna fed by a Quasi-Yagi radiator,” IEEE Electron Device Lett., vol.30, pp.1167-1169, Nov. 2009.
[54]J. H. Huang, “Ultra-high-speed microwave integrated photonic transmitter for radio-over-fiber applications”, master thesis, NCU, August 2011.
[55]Y. S. Wu and J. W. Shi, "Dynamic analysis of high-power and high-speed near-ballistic uni-iraveling carrier photodiodes at w-band." IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1160–1162, July 2008.
[56]H. J. Tsai, N. W. Chen, F. M. Kuo, and J. W. Shi, "Front-end design of W-band integrated photonic transmitter with wide optical-to-electrical bandwidth for wireless-over-fiber application," in Proc. IEEE Microw. Theory Tech. Int. Microw. Symp., Anaheim, CA, pp. 740–743, May 23–28, 2010.
[57]A. M. Weiner, Ultrafast optics, Wiley Series in Pure and Applied Optics, Sept. 2011.
[58]B.E.A. Saleh and M.C. Teich, Fundamentals of photonics, Wiley Series in Pure and Applied Optics, March 2007.
[59]Yun-shik Lee, Principles of terahertz science and technology, Springer Verlag, Dec. 2008.
[60]A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Review of scientific instruments, vol. 71, no. 5, pp. 1929-1960, May 2000.
[61]A. M. Weiner, J. P. Heritage, and E. M. Kirschner. ”High-resolution femtosecond pulse shaping,” Optical Society of American, vol. 5, no. 8, pp. 1563–1572, August 1988
[62] H.-P. Chuang and C.-B. Huang, “Generation and delivery of 1-ps optical pulses with ultrahigh repetition-rates over 25-km single mode fiber by a spectral line-by-line pulse shaper,” Opt. Express, vol. 18, no. 23, pp. 24003-24011, 2010.
[63] F.M. Kuo, J.W. Shi, H.C. Chiang, H.P. Chuang, H.K. Chiou, C.L. Pan, N.W. Chen, H.J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100 GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photonics Journal, vol. 2, no. 5, pp 719-727, Oct. 2010.
[64]C.H. Lin, “ A study of millimeter-wave signals generated by shaped-pulse-excited photonic transmitters,” master thesis, NTHU, June, 2011