研究生: |
黃明熙 Ming-Shi Huang |
---|---|
論文名稱: |
弱磁間接磁場導向感應馬達驅動系統之建立及性能改善研究 ESTABLISHMENT OF A FIELD-WEAKENED INDIRECT FIELD-ORIENTED INDUCTION MOTOR DRIVE AND ITS PERFORMANCE IMPROVEMENT STUDY |
指導教授: |
廖聰明
Chang-Ming Liaw |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 138 |
中文關鍵詞: | 感應馬達 、磁場導向控制 、弱磁控制 、時間延遲 、雙自由度 、數位訊號處理器 |
外文關鍵詞: | induction motor, field-orientation control, field-weakening control, dead-time, two degree of freedom, digital signal processor |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
弱磁間接磁場導向感應馬達驅動系統很難同時兼具良好之暫態響應與高能量轉換效率,其操控特性易受磁通設定值、磁場導向失調及馬達參數變化等之影響。本論文旨在構建以DSP為主之間接磁場導向感應馬達驅動系統及從事其在弱磁控制下之暫態與穩態特性改善研究。首先探究感應馬達在傳統弱磁控制下之操控特性與限制,並據以研擬所提之弱磁控制策略。在所提之弱磁控制法中,所定之正規d-軸激磁電流命令含一由 法決定之成份及一負載效應補償成份;為進一步改善其性能,此正規成份再輔加以一暫態及一穩態補償成份。暫態補償成份由q-軸轉矩電流追蹤誤差放大產生,此互耦補償成份用於暫態期之進一步弱磁,以改善電流追蹤與轉矩產生性能;另外,再以一簡單之解調補償機構以更進一步改善感應馬達驅動性能。當系統由暫態進入穩態期時,將滑差命令或激磁電流命令依所提之直覺調控方式微調,使馬達具有較佳之穩態轉矩產生能力,其能量轉換效率亦因之提高。
在建立了具合宜弱磁策略之馬達驅動系統後,接著從事其速度控制性能研究。所提之控制架構含有一回授控制器及一個命令前向控制器,使具有雙自由度以處理命令追控及負載調控問題。在選定之工作點下,速度回授控制器依所定之負載調控規格設計,而前向控制器設為受控體之反模式。為降低參數變動與系統傳輸延遲對速度控制性能之影響,本論文開發一可變結構系統調整之傳輸延遲及負載擾動效應補償器。由補償器之補償訊號亦估測出機械慣量之變動量,並用以調整前向控制器及補償器中之參數以進一步改善速度追蹤響應。最後,在最外迴路輔加一模式跟蹤控制以提供閉回路之調節控制。
合宜之數位模擬環境非常有利於馬達驅動系統組成之分析與設計,因此,本論文建立一以Simulink為基礎之所提弱磁間接磁場導向感應馬達驅動系統之模擬環境,並以一些穩態與暫態之模擬結果驗證所建模擬環境之正確性。
This dissertation is mainly concerned with the transient and static performance improvements for a field-weakened (FW) indirect field-oriented (IFO) induction motor driver. First, the operating characteristics of an IFO induction motor drive under conventional field-weakening control are studied to comprehend its limitations. Then the improved field-weakening scheme is proposed. In which, a normal d-axis flux current command is first set. It consists of a major component generated based on improved approach, a loading compensating and a transient compensating components. The last two components are added to yield closer current tracking control during transient period. In addition, a simple robust current controller and a detuning compensator are developed to enhance the current tracking performance of a detuned induction motor. As the transient being elapsed and entering static period, the slip angular speed command or the flux current command is tuned to let the motor quickly reach a stable condition having improved energy conversion efficiency.
Having established the induction motor drive with adequate field-weakening scheme, its speed control improvement is made. To yield good tracking and regulation speed control performances, the proposed control scheme consists of a feedback controller and a command feedforward controller (FC) to possess two-degree-of-freedom (2DOF). At nominal case, the feedback controller is designed according to the given regulation control requirements, and the command feedforward controller is set as the inverse of plant nominal model to let the tracking response follow the one defined by a reference model. Then, to reduce the effects of system dead-time and parameter variations on the speed control performance, a variable-structure system (VSS) adapted dead-time and disturbance compensator (DTDC) is developed. An estimated signal containing plant uncertainties and disturbances is generated and used for canceling their effects on dead-time compensation control. Moreover, the tracking response is further enhanced by on-line adjusting the parameters set in the FC and the DTDC according to the estimated mechanical inertia change. Finally, the closed-loop regulation control is provided by adding a model following control scheme.
In performing the analysis and design of the constituted components in a motor drive, a suitable simulation tool is preferable. Hence finally in this dissertation, a Simulink-based simulation environment for the established FW IFO induction motor drive is built up. Some simulation results are provided to verify the correctness of the established simulation scheme.
A. Field-Weakened Indirect Field-Orientation Control
[1] R. Krishnan, and S. B. Aravind, “A review of parameter sensitivity and adaptation in indirect vector controlled induction motor drive systems,” IEEE Trans. Power Electron., vol. 6, no. 4, pp. 695-703, 1991.
[2] D. W. Novotny and T. A. Lipo, Vector control and dynamics of AC drives, Oxford: Clarendon Press, 1996.
[3] B. K. Bose, Modern power electronics and AC drives, New Jersey: Prentice Hall PTR, 2002.
[4] K R. J. Kerkman, T. M. Rowan and D. Leggate, “Indirect field-oriented control of an induction motor in the field-weakening region,” IEEE Trans. Ind. Applicat., vol. 28, no. 4, pp. 850-857, 1992.
[5] X. Xu, R. D. Doncker and D. W. Novotny, “Stator flux orientation control of induction machines in the field weakening region,” in Proc. IEEE Industry Applications Conference, 1988, pp. 437-443.
[6] D. Casadei, G. Serra and A. Tani, “Direct flux and torque control of induction machine for electric vehicle applications,” Seventh International Conference on Electrical Machines and Drives, 1995, pp. 349-353.
[7] M. H. Shin, D. S. Hyun and S. B. Cho, “Maximum torque control of stator-flux-oriented induction machine drive in the field-weakening region,” IEEE Trans. Ind. Applicat., vol. 38, no. 1, pp. 117-122, 2002.
[8] S. H. Kim, S. K. Sul and M. H. Park, “Maximum torque control of an induction machine in the field-weakening,” in Proc. IEEE IAS’93, 1993, pp. 401-407.
[9] S. H. Kim and S. K. Sul, “Voltage control strategy for maximum torque operation of an induction machine in the field-weakening region,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 512-518, 1997.
[10] B. J. Seibel, T. M. Rowan and R. J. Kerkman, “Field-oriented control of an induction motor in the field-weakening region with DC-link and load disturbance rejection,” IEEE Trans. Ind. Applicat., vol. 33, no. 6, pp. 1578-1584, 1997.
[11] L. Harnefors, K. Pietil□inen and L. Gertmar, “Torque-maximizing field-weakening control: design, analysis, and parameter selection,” IEEE Trans. Ind. Electron., vol. 48, no. 1, pp. 161-168, 2001.
[12] R. S. Wieser, “Optimal motor flux regulation for fast-accelerating induction machines in the field-weakening region,” IEEE Trans. Ind. Applicat., vol. 34, no. 5, pp. 1081-1087, 1998.
[13] J. W. Choi and S. K. Sul, “Fast current controller in three-phase AC/DC boost converter using d-q axis cross coupling,” IEEE. Trans. Power Electron., vol. 13, no. 1, pp.179-185, 1998.
[14] F. Briz, A. Diez, M.W. Degner and R. D. Lorenz, “Current and flux regulation in field-weakening operation,” IEEE Trans. Ind. Applicat., vol. 37, no. 1, pp.42-50, 2001.
[15] F. Yusivar, T. Kihara, M. Sato, S. Wakao and T. Yamamura, “|Iq| added flux weakening strategy for the rotor flux oriented control of a sinusoidal PWM VSI-fed induction motor,” Conf. IEEE Ind. Electron. Society, 2001, pp.1160-1165.
[16] M. S. Huang and C. M. Liaw, “Transient performance improvement control for IFO induction motor drive in field-weakening region,” IEE Proc. Electr. Power Appl., vol. 150, no. 5, pp. 521-530, 2003.
[17] M. H. Faeka, Khater, R. D. Lorenz, D. W. Novotny and K. Tang, “Selection of flux level in field-oriented induction machine controllers with consideration of magnetic saturation effects,” IEEE Trans. Ind. Applicat., vol. 23, no. 2, pp. 276-282, 1987.
[18] R. D. Lorenz, and D. W. Novotny, “Saturation effects in field-oriented induction machines,” IEEE Trans. Ind. Applicat., vol. 26, no. 2, pp. 283-289, 1990.
[19] H. Grotstollen and J. Wiesing, “Torque capability and control of a saturated induction motor over a wide range of flux weakening,” IEEE Trans. Ind. Electron., vol. 42, no.4, pp.374-381, 1995.
[20] P. J. Coussens, A. P. Van Den Bossche and J. A. Melkebeek, “Magnetizing current control strategies for nonlinear indirect field oriented control,” Proc. IEEE Industry Applications Conference, 1995, pp. 538~545.
[21] A. Bűnte, H. Grotstollen and P. Krafka, “Field-weakening of induction motors in a very wide region with regard to parameter uncertainties,” Proc. IEEE Power Electronics Specialists Conference, 1996, pp.391-397.
[22] M. Tarbouchi and H. L. Huy, “Control by exact linearization of an induction motor in field-weakening regime,” in Proc. IEEE IECON’98, 1998, pp.1597-1602.
[23] E. Levi, M. Sokola and S. N. Vukosavic, “A method for magnetizing curve identification in rotor flux oriented induction machines,” IEEE Trans. Energy Conversion, vol. 15, no. 2, pp. 157-162, 2000.
[24] H. Y. Kim, M. H. Shin and D. S. Hyan, “Improved vector control of an induction motor with on-line tuning of its parameters,” in Proc. IEEE IECON’98, 1998, pp. 854-558.
[25] E. Levi and M. Wang, “Online identification of the mutual inductance for vector controlled induction motor drives,” IEEE Trans. Energy Conversion, vol. 18, no. 2, pp. 299-305, 2003.
[26] G. O. Garcia, J. C. M. Luis, R. M. Stephan and E. H. Watanabe, “An efficient controller for an adjustable speed induction motor drive,” IEEE Trans. Ind. Electron., vol. 41, no. 5, pp. 533-539, 1994.
[27] J. B. Wang and C. M. Liaw, “Indirect field-oriented induction motor drive with fuzzy detuning correction and efficiency optimization control,” IEEE Trans. Ind. Electron., vol. 144, no.1, pp. 37-45, 1997.
[28] C. M. Ta and Y. Hori, “Convergence improvement of efficiency-optimization control of induction motor drives,” IEEE Trans. Ind. Applicat., 2001, vol. 37, no. 6, pp. 1746-1753, 2001.
[29] C. Chakraborty and Y. Hori, “Fast efficiency optimization techniques for the indirect vector-controlled induction motor drives,” IEEE Trans. Ind. Applicat., vol. 39, no. 4, pp. 1070-1076, 2003.
[30] S. N. Vukosavic and E. Levi, “A method for transient torque response improvement in optimum efficiency induction motor drives,” IEEE Trans. Energy Conversion, vol. 18, no. 6, pp. 484-493, 2003.
[31] S. N. Vukosavic and E. Levi, “Robust DSP-based efficiency optimization of a variable speed induction motor drive,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 161-168, 2003.
[32] M. S. Huang and C. M. Liaw, “Improved field-weakening control for IFO induction motor,” IEEE Trans. Aerospace and Electronic Systems, vol. 39, no. 2, pp. 647-659, 2003.
B. Speed Control
[33] M. Iwasaki and N. Matsui, “Robust speed control of IM with torque feedforward control,” IEEE Trans. Ind. Electron., vol. 44, no.6, pp. 553-560, 1997.
[34] Y. Xia, X. Yu and W. Oghanna, “Adaptive robust fast control for induction motors,” IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 854-862, 2000.
[35] E. Cerruto, A. Consoli, A. Raciti and A. Testa, “Fuzzy adaptive vector control of induction motor drives,” IEEE. Trans. Power Electron., vol. 12, no. 6, pp.1028-1040, 1998.
[36] M. N. Uddin, T. S. Radwan and M. A. Rahman, “Performances of fuzzy- logic-based indirect vector control for induction motor drive,” IEEE Trans. Ind. Applicat., vol. 38, no. 5, pp. 1219-1225, 2002.
[37] F. Barrero, A. Gonz□lez, A. Torralba, E. Galv□n and L. G. Franquelo, “Speed control of induction motors using a novel fuzzy sliding-mode structure,” IEEE Trans. Fuzzy System, vol. 10, no. 3, pp. 375-383, 2002.
[38] M. Tarbouchi and H. L. Huy, “Control by exact linearization of an induction motor in field weakening regime,” in Proc. IEEE IECON’98, 1998, pp. 854-558.
[39] C. M. Liaw and S. J. Chiang, “Robust control of multi-module current-mode controlled Converters,” IEEE Trans. Ind. Electron., Vol. 40, No. 4, pp. 455-465, 1993.
C Dead-Time Compensation Control
[40] J. Lunge, Robust multivariable feedback control, New York: Prentice Hall, 1989.
[41] A. T. Bahill, “A simple adaptive smith-predictor for controlling time-delay systems: tutorial,” IEEE Control System Magazine, 1983, pp. 16-22.
[42] F. J. Lin and C. M. Liaw, “Control of indirect field-oriented induction motor drives considering the effects of dead-time and parameter variations,” IEEE Trans. Ind. Electron., vol. 40, no. 5, pp. 486-495, 1993.
[43] K. J. Astrom, C. C. Hang and B. C. Lim, “A new smith predictor for controlling a process with an integrator and long dead-time,” IEEE Trans. Automatic Control, vol. 39, no. 2, pp. 343-345, 1994.
[44] R. Marquez, M. Fliess and H. Mounier, “A non-conventional robust PI-controller for the smith predictor,” Conference on Decision and Control, 2001, pp. 2259-2260.
[45] M. R. Stojić, M. S. Matijević and L. S. Draganović, “A robust smith predictor modified by internal models for integrating process with dead time,” IEEE Trans. Automatic Control, vol. 46, no. 8, pp. 1293-1298, 2001.
[46] M. S. Huang and C. M. Liaw, “Speed control for field-weakened induction motor drive,” IEE Proc. Electr. Power Appl., to appear, 2004.
D. Establishment of Simulation Environment
[47] Z. Daboussi and N. Mohan, “ Digital simulation of field-oriented control of induction motor drives using EMTP,” IEEE Trans. Energy Conversion, vol. 3, no. 3, pp. 667-673, 1988.
[48] The Synopsys Inc., Saber User Guide, 2004
[49] C. M. Ong, Dynamic simulation of electric machine, New Jersey: Prentice Hall PTR, 1997.
[50] The MathWorks Inc., SIMULINK Version 5 User’s Guide, 2002.
[51] R. E. Araujo and D. S. Freitas, “The development of vector control signal processing blockset for Simulink: philosophy and implementation,” IEEE IECON’98, 1998, pp. 1570-1575.
[52] A. Dumitrescu, D. Fodor, T. Jokinen, M. Rosu and S. Bucurenciu, “Modeling and simulation of electric drive systems using Matlab/Simulink environments,” IEMDC’99, Seattle, 1999, pp. 451-453.
[53] P. A. Spiller, J. F. Haffner and L. F. A. Pereira, “Real-time application of simulation tools and implementation of control techniques for induction machines in Matlab/Simulink/spl reg/environment,” IEEE IECON’02, 2002, pp. 2068-2072.
[54] L. F. A. Pereira, J. F. Haffner, E. M. Hemerly and H. A. Grundling, “A simulation framework for flux estimation and vector control of induction machines,” IEEE IECON’98, 1998, pp. 1587-1591.
[55] V. Donescu, A. Charette, Z. Yao, V. Rajagopalan, “Modeling and simulation of saturated induction motors in phase quantities,” IEEE Trans. Energy Conversion, vol. 14, no. 3, pp. 386-393, 1999.
[56] H. Macbahi, A. Ba-razzouk, J. Xu, A. Cheriti and V. Rajagopalan, “A unified method for modeling and simulation of three phase induction motor drives,” Conference on Electrical and Compute Engineering, Halifax, 2000, pp. 345-349.
[57] R. Champagne, L. A. Dessain, H. F. Blanchette and G. Sybille, “Analysis and validation of a real-time AC drive simulator,” IEEE. Trans. Power Electron., vol. 19, no. 2, pp. 336-345, 2004.
E. Digital Signal Processor
[58] F. Nekoogar and G. Moriarty, Digital Control using Digital Signal Processing, New Jersey: Prentice Hall PTR, 1999.
[59] Texas Instruments Inc., TMS320C52 Data Sheet, 1996.
[60] Texas Instruments Inc., TMS320F240 Data Sheet, 2002.
F. System Parameter Estimation
[61] C.M. Liaw, “System parameter estimation from sampled data”, Control and dynamic systems, vol. 63, pp. 161-175, 1994.
[62] C. M. Liaw, T. S. Liu, A. H. Liu, Y. T. Chen, “ Parameter estimation of excitation systems from sampled data”, IEEE Trans. Automatic Control., vol. 37, no. 5, pp. 663-666, 1992.