簡易檢索 / 詳目顯示

研究生: 林才祐
Lin, Tsai-Yu
論文名稱: 溫感性水膠複合材料於植入式骨組織再生應用之研究
Thermo-sensitive hydrogel composite for implant application in bone regeneration
指導教授: 朱一民
Chu, I-Ming
口試委員: 李文福
Lee, Wen-Fu
姚少凌
Yao, Chao-Ling
鍾仁傑
Chung, Ren-Jei
陳進富
Chen, Jin-Fu
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 103
中文關鍵詞: 溫感水膠硬骨軟骨複合材料再生
外文關鍵詞: thermogel, bone, cartilage, composite, regeneration
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討以可降解性之溫感性水膠,如聚乙二醇-聚乳酸/甘醇酸之雙團聯共聚物,應用於軟硬骨組織再生中之可能性評估。實驗以開環聚合法,製備多種聚乙二醇-聚酯雙團聯共聚物,經由生物相容性評估後,篩選出聚乙二醇-聚乳酸/甘醇酸(mPEG-PLGA),聚乙二醇-聚乳酸/戊內酯(mPEG-PVLA),聚乙二醇-聚乳酸/己內酯(mPEG-PCLA)等三種材料,進行後續之兔子軟硬骨缺損模式試驗。硬骨缺損模式中:先經由四週之評估期後,結果顯示mPEG-PLGA組之硬骨再生能力優於mPEG-PVLA組。因此,後續實驗更進一步的將mPEG-PLGA複合對骨母細胞生長有活性之生醫材料,如:氫氧基磷灰石(Hydroxyapatite, HAp),三鈣磷酸鹽(β-tricalcium phosphate, TCP)。評估複合植入材之物理/化學性質與生物相容性後,植入兔子大腿骨非癒合型之骨缺損之中。植入三個月之後,犧牲動物體,並以電腦斷層掃瞄(μCT),骨質密度儀(BMD),組織切片染色分析。初步結果顯示,mPEG-PLGA複合HAp/TCP(7:3)者,其骨組織再生最優。軟骨缺損模式中:選用mPEG-PCLA複合膠原蛋白二型或TGFβ-3生長因子之複合植入材,植入兔子膝蓋軟骨缺損之中。八週之評估期後,犧牲動物體,並以組織切片染色分析。初步結果顯示,其對軟骨修復有明顯效果。綜由上述之研究成果顯示:溫度敏感型聚乙二醇-聚酯類之雙團聯共聚物,可簡易複合式多種具骨誘導因子,如HAp,TCP與TGF-β3,並且對軟硬骨缺損有修復之成效,適合於臨床醫療上開發。


    The objective of this research was to discuss the biodegradable thermo-sensitive hydrogel, such as methoxy poly(ethylene glycol)-poly(lactic-co-glycolic acid), mPEG550-PLGA1405, applies to bone tissue regeneration. Several diblock copolymers were synthesized undergoing ring-opening polymerization process. After biocompatibility test, we chose mPEG-PLGA, mPEG-PVLA ( methoxy poly(ethylene glycol)-poly(lactic acid-co-valerolactone) and mPEG-PCLA ( methoxy poly(ethylene glycol)-poly(lactic acid-co- caprolactone) to utilize in rabbit bone defect model. Four weeks later, the result of bone defect regeneration revealed the mPEG-PLGA implant experiments were superiorly than mPEG-PVLA implant experiments. Moreover, mPEG-PLGA were blending with hydroxyapatite (HAp), β-tricalcium phosphate (TCP) to form into a implant composite for rabbit non-union critical-size model. X-ray evaluated bone formation every four weeks postoperatively. The rabbits were sacrificed 12 weeks postoperatively then their femur bones were harvested for micro-computed tomography(μCT), bone mineral density (BMD) and histology study. The results validated the usage mPEG-PLGA/HAp/TCP(7:3) as bone graft substitute. We chose mPEG-PCLA with collagen type II or TGFβ-3 for rabbit cartilage defect model. After eight weeks implant, the rabbits were sacrificed and evaluated by histology. The results validated mPEG-PCLA/collagen type II/ TGF-β3 composites can enhance cartilage repair. Summarily, the biodegradable thermo-sensitive mPEG-poly ester copolymer composites were suitable for bone/cartilage tissue regeneration.

    目錄 摘要 I Abstract III 目錄 IV 圖目錄 VII 表目錄 X 第一章 文獻回顧 1 1.1 生醫材料簡介 1 1.2 組織工程(Tissue Engineering)與生醫高分子材料 2 1.3 藥物釋放系統 (Drug Delivery Systems, DDS) 3 1.4 水膠材料簡介與種類 6 1.5 溫度敏感性水膠(Thermo-sensitive Hydrogels) 9 1.5.1 聚異丙基丙烯醯胺型水膠(Poly(N-substituted acrylamide)-based block copolymer hydrogels) 10 1.5.2 聚環氧乙烯/聚環氧丙烯型水膠(PEO/PPO-based block copolymer hydrogels) 11 1.5.3 聚乙二醇/聚酯型水膠(PEG/polyester-based block copolymer hydrogels) 12 1.5.4 聚乙二醇/聚肽型水膠(PEG/polypeptide-based block copolymer hydrogels) 17 1.5.5 溫度敏感性水膠之應用 18 1.6 骨組織 20 1.6.1 骨組織之骨重塑(Bone Remodeling) 21 1.6.2 骨生成蛋白因子(Bone Morphogenetic Protein-2,BMP-2) 22 1.6.3 骨缺損(Bone Defect) 23 1.6.4 骨替代物(Bone Substitute) 23 1.7 軟骨組織 25 1.7.1 軟骨再生(Cartilage Regeneration) 26 第二章 研究動機與目的 27 第三章 實驗儀器與設備 30 實驗藥品 30 實驗儀器 32 第四章 實驗步驟與方法 34 4.1 實驗設計 34 4.2 mPEG550-polyester1405雙團鏈共聚合物之合成 35 4.2.1 mPEG550-poly(lactic-co-glycolic acid)1405 ,mPEG-PLGA雙團鏈共聚合物之合成 36 4.2.2 mPEG550-poly(lactic acid-co-β-propiolactone)1405 ,mPEG-PPLA雙團鏈共聚合物之合成 37 4.2.3 mPEG550-poly(lactic acid-co-δ-valerolactone)1405 ,mPEG-PVLA雙團鏈共聚合物之合成 38 4.2.4 mPEG550-poly(lactic acid-co-ε-caprolactone)1405 ,mPEG-PCLA雙團鏈共聚合物之合成 39 4.2.5 mPEG550-poly(lactic acid-co-γ-thiobutyrolactone)1405 ,mPEG-PSLA雙團鏈共聚合物之合成 40 4.3 mPEG550-polyester1405雙團鏈共聚合物之鑑定與分析比較 41 4.3.1 NMR分析原理與測定方法 41 4.3.2 GPC分析原理與測定方法 42 4.3.3 LCST分析原理與測定方法 42 4.3.4 流變儀分析原理與測定方法 43 4.3.5 粒徑分析原理與測定方法 43 4.3.6 臨界微胞濃度(CMC)分析原理與測定方法 44 4.3.7 生物相容性分析 45 4.3.7.1 細胞毒性分析 46 4.3.7.2 溶血試驗分析 47 4.3.7.2.1 原理 47 4.3.7.2.1 標準曲線 48 4.3.7.2.2 全血品質鑑定 48 4.3.7.2.3 全血血紅素測定 49 4.3.7.2.4 溶血試驗測定 49 4.3.8 動物試驗 50 4.3.8.1 初期動物試驗-骨缺損模式驗證水膠之可行性(Pilot Study) 50 4.3.8.1 動物試驗-非癒合型骨缺損模式 51 4.3.8.2 動物試驗-膝蓋軟骨缺損模式 52 第五章 結果與討論 53 5.1 雙團鏈共聚合物之溫感性水膠合成反應討論 54 5.1.1 NMR鑑定 55 5.1.1.1 mPEG-PLGA NMR圖譜 55 5.1.1.2 mPEG-PPLA NMR圖譜 56 5.1.1.3 mPEG-PVLA NMR圖譜 57 5.1.1.4 mPEG-PCLA NMR圖譜 58 5.1.1.5 mPEG-PSLA NMR圖譜 59 5.1.2 GPC分析分子量 61 5.1.3 LCST分析溫感特性 62 5.1.4 黏彈特性分析 64 5.1.5 臨界微胞濃度分析 66 5.1.6 微胞粒徑分析 67 5.1.7 結論 68 5.2初期動物試驗-骨缺損模式驗證水膠之可行性(Pilot Study) 69 5.2.1 MTT細胞毒性分析 69 5.2.2 Hemolysis test溶血試驗分析 71 5.2.3 動物試驗 72 5.2.4 結論 74 5.3水膠複合材料之非癒合型骨缺損動物模式試驗(non-union critical size defect animal model ) 75 5.3.1 mPEG-PLGA複合材料製備 75 5.3.2 mPEG-PLGA複合材料鑑定HAp與TCP成分 78 5.3.3 Hemolysis test溶血試驗分析水膠複合材料 80 5.3.4水膠複合材料體外降解分析 81 5.3.5水膠複合材料流變性質 83 5.3.6非癒合型骨缺損動物模式試驗(non-union critical size defect animal model )[39] 85 5.3.7 結論 88 5.4水膠複合材料之膝蓋軟骨缺損動物模式試驗(knee cartilage defect animal model) 89 5.4.1水膠合成與製備 89 5.4.2溫感水膠之成膠行為(sol-gel-sol) 90 5.4.3 mPEG-PCLA溫感水膠之體外降解試驗 91 5.4.4 mPEG-PCLA溫感水膠之體外生物相容性(MTT assay) 93 5.4.5膝蓋軟骨缺損動物模式試驗(knee cartilage defect animal model) 94 5.4.6結論 96 第六章 結論與未來展望 97 第七章 參考文獻 99 圖目錄 第一章 圖1. 1 人工髖關節與其植入處示意圖 1 圖1. 2 組織工程三要件 3 圖1. 3 不同藥物釋放系統的型態 4 圖1. 4 PLGA高分子水解後新陳代謝示意圖 5 圖1. 5 溫度敏感性水膠之化學結構式 10 圖1. 6 溫感性水膠PNIPAm於微機電製程中之應用 11 圖1. 7 ABA三團鏈共聚合物型溫感性水膠結構式 12 圖1. 8 PEG-PLLA-PEG之gel-to-sol轉換 13 圖1. 9 PEG-PLGA-PEG之sol-gel-sol相轉換 14 圖1. 10 具溫感特性之雙團練聚合物 14 圖1. 11 雙團鏈溫感性水膠 15 圖1. 12 相同親水基鏈段時,疏水鏈段長度對相轉換之影響 16 圖1. 13 相同親水基鏈段時,疏水鏈段長度對相轉換之影響 17 圖1. 14 mPEG-PLGA體外降解試驗 17 圖1. 15 core-shell結構 19 圖1. 16 細胞薄層膜於再生醫學上之研究 20 圖1. 17 骨骼組織 20 圖1. 18 骨母細胞與蝕骨細胞於骨組織重塑中過程 21 圖1. 19 骨生長之訊號傳遞關係 22 圖1. 20 自體移植與異體移植之效果差異性 24 圖1. 21 各式不同骨取代物對骨生長的效能 25 第四章 圖4. 1 反應裝置圖 36 圖4. 2 mPEG-PLGA雙團鏈共聚合物之合成 37 圖4. 3 mPEG-PPLA雙團鏈共聚合物之合成 38 圖4. 4 mPEG-PVLA雙團鏈共聚合物之合成 38 圖4. 5 mPEG-PCLA雙團鏈共聚合物之合成 39 圖4. 6 mPEG-PSLA雙團鏈共聚合物之合成 40 圖4. 7 微胞於溫度變化時體積變化之示意圖 43 圖4. 8 微胞形成示意圖 44 圖4. 9 MTT反應示意圖 46 圖4. 10 非癒合型骨缺損模式建立 52 第五章 圖5. 1 mPEG-PLGA之1H-NMR 55 圖5. 2 mPEG-PPLA之1H-NMR 56 圖5. 3 mPEG-PVLA之1H-NMR 57 圖5. 4 mPEG-PCLA之1H-NMR 58 圖5. 5 mPEG-PSLA之1H-NMR 59 圖5. 6 雙團鏈共聚合物之LCST 62 圖5. 7 溫感性水膠之黏度對溫度之變化關係 64 圖5. 8 mPEG-PLGA之CMC分析 66 圖5. 9 溫感性水膠之MTT細胞毒性分析 70 圖5. 10 溫感性水膠之溶血試驗 71 圖5. 11 骨缺損大小約為5mm×2mm 72 圖5. 12 mPEG-PLGA 組織圖(紅色圈圈位置為植入處) 73 圖5. 13 mPEG-PLGA H&E staning(40X) 73 圖5. 14 mPEG-PVLA 組織圖(紅色圈圈位置為植入處) 73 圖5. 15 mPEG-PVLA H&E staning(40X) 73 圖5. 16 mPEG-PLGA混合陶瓷粉末比例示意圖 77 圖5. 17 Bone Glue植入塊材 77 圖5. 18 水膠複合材料之XRD分析 78 圖5. 19 水膠複合材料之溶血試驗 80 圖5. 20 水膠複合材料降解之重量損失 82 圖5. 21 水膠複合材料,殘餘高分子之分子量變化 82 圖5. 22 mPEG-PLGA+HAp/TCP複合材料之Storage modulus與Loss modulus 83 圖5. 23 mPEG-PLGA+HAp/TCP複合材料之Complex viscosity 84 圖5. 24 水膠複合材料植入 85 圖5. 25 Defect 組試驗 85 圖5. 26 自體骨組試驗 85 圖5. 27 自體骨組之X-ray,組織圖,與CT觀察圖 86 圖5. 28 水膠複合材料mPEG-PLGA+HAp/TCP 7 :3組之X-ray,組織圖,與CT觀察圖 86 圖5. 29 水膠複合材料mPEG-PLGA+HAp/TCP 5 :5組之X-ray,組織圖,與CT觀察圖 86 圖5. 30 水膠複合材料mPEG-PLGA+HAp/TCP 3 :7組之X-ray,組織圖,與CT觀察圖 87 圖5. 31 水膠複合材料植入12週後之動物實驗結果。 87 圖5. 32 不同LA/CL比例之mPEG-PCLA溫感水膠之sol-gel-sol相圖 90 圖5. 33 mPEG-PCLA溫感水膠體外降解,材料之重量損失 92 圖5. 34 mPEG-PCLA溫感水膠體外降解,殘餘高分子之分子量變化 92 圖5. 35 mPEG-PCLA與mPEG-PLGA溫感水膠體外降解,降解溶液之pH變化 93 圖5. 36 mPEG-PCLA 生物相容性(MTT assay) 94 圖5. 37 mPEG-PCLA水膠之動物試驗 組織切片 95 表目錄 第一章 表1. 1 PLGA之藥物釋放系統研究近況 6 表1. 2 水膠高分子材料於生醫上的應用 7 表1. 3 水膠可接受的不同刺激訊號分類 9 第四章 表4. 1 mPEG-PCLA溫感水膠合成進料劑量 40 表4. 2 溶血指數對溶血之判定 50 第五章 表5. 1 mPEG-PLGA於1H-NMR中各氫原子的位置 56 表5. 2 mPEG-PPLA於1H-NMR中各氫原子的位置 57 表5. 3 mPEG-PVLA於1H-NMR中各氫原子的位置 58 表5. 4 mPEG-PCLA於1H-NMR中各氫原子的位置 59 表5. 5 mPEG-PSLA於1H-NMR中各氫原子的位置 60 表5. 6 共聚合物分子量 61 表5. 7 溫感性水膠之溶液性質 67 表5. 8 生醫材料應用骨取代物其優缺點分析 75 表5. 9 骨取代物之生醫材料商品 76 表5. 10 mPEG-PCLA系列溫感水膠之單體進料比與分子量鑑定 89

    [1] Williams DF. On the nature of biomaterials. Biomaterials 2009;30:5897–909.
    [2] Hermawan H, Dubé D, Mantovani D. Developments in metallic biodegradable stents. Acta Biomaterialia 2010;6:1693–7.
    [3] Pattanayak DK, Fukuda A, Matsushita T, Takemoto M, Fujibayashi S, Sasaki K, et al. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments. Acta Biomaterialia 2011;7:1398–406.
    [4] Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, et al. Current trends and future perspectives of bone substitute materials – From space holders to innovative biomaterials. Journal of Cranio-Maxillofacial Surgery 2012;40:706–18.
    [5] Zimmer G, Rohrhofer A, Lewis K, Goessl A, Hoffmann O. The surface microporosity of ceramic biomaterials influences the resorption capacity of osteoclasts. J Biomed Mater Res 2013;101:3365–71.
    [6] Holzapfel BM, Reichert JC, Schantz J-T, Gbureck U, Rackwitz L, Nöth U, et al. How smart do biomaterials need to be? A translational science and clinical point of view. Advanced Drug Delivery Reviews 2013;65:581–603.
    [7] 于建華. 人工關節知識與簡介 2003.
    [8] Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Progress in Polymer Science 2011;36:1254–76.
    [9] Quirk RA, France RM, Shakesheff KM, Howdle SM. Supercritical fluid technologies and tissue engineering scaffolds. Current Opinion in Solid State and Materials Science 2004;8:313–21.
    [10] Singh L, Kumar V, Ratner BD. Generation of porous microcellular 85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications. Biomaterials 2004;25:2611–7.
    [11] Tai H, Mather ML, Howard D, Wang W, White LJ, Crowe JA, et al. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Eur Cell Mater 2007;14:64–77.
    [12] Goh S-K, Bertera S, Olsen P, Candiello JE, Halfter W, Uechi G, et al. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials 2013;34:6760–72.
    [13] Becker C, Jakse G. Stem Cells for Regeneration of Urological Structures. European Urology 2007;51:1217–28.
    [14] Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010;75:1–18.
    [15] Gelperina S, Kisich K, Iseman MD, Heifets L. The Potential Advantages of Nanoparticle Drug Delivery Systems in Chemotherapy of Tuberculosis. Am J Respir Crit Care Med 2005;172:1487–90.
    [16] Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annual Review of Biomedical Engineering 2000;2:9–29.
    [17] Wichterle O, LíM D. Hydrophilic Gels for Biological Use. Nature 1960;185:117–8.
    [18] Kumar A, Srivastava A, Galaev IY, Mattiasson B. Smart polymers: Physical forms and bioengineering applications. Progress in Polymer Science 2007;32:1205–37.
    [19] He C, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 2008;127:189–207.
    [20] Pelton R. Poly(N-isopropylacrylamide) (PNIPAM) is never hydrophobic. Journal of Colloid and Interface Science 2010;348:673–4.
    [21] Schmidt S, Zeiser M, Hellweg T, Duschl C, Fery A, Möhwald H. Adhesion and Mechanical Properties of PNIPAM Microgel Films and Their Potential Use as Switchable Cell Culture Substrates. Adv Funct Mater 2010;20:3235–43.
    [22] Bonacucina G, Cespi M, Mencarelli G, Giorgioni G, Palmieri GF. Thermosensitive Self-Assembling Block Copolymers as Drug Delivery Systems. Polymers 2011;3:779–811.
    [23] Chen C-C, Fang C-L, Al-Suwayeh SA, Leu Y-L, Fang J-Y. Transdermal delivery of selegiline from alginate–Pluronic composite thermogels. International Journal of Pharmaceutics 2011;415:119–28.
    [24] Cespi M, Bonacucina G, Casettari L, Mencarelli G, Palmieri GF. Poloxamer Thermogel Systems as Medium for Crystallization. Pharm Res 2012;29:818–26.
    [25] Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997;388:860–2.
    [26] Jeong B, Bae YH, Kim SW. Thermoreversible Gelation of PEG−PLGA−PEG Triblock Copolymer Aqueous Solutions. Macromolecules 1999;32:7064–9.
    [27] Jeong B, Han Bae Y, Wan Kim S. Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers. Colloids and Surfaces B: Biointerfaces 1999;16:185–93.
    [28] Kim MS, Seo KS, Khang G, Cho SH, Lee HB. Preparation of methoxy poly(ethylene glycol)/polyester diblock copolymers and examination of the gel‐to‐sol transition. Journal of Polymer Science Part A: Polymer Chemistry 2004;42:5784–93.
    [29] Lee Y-M. Thermosensitive mPEG-PLGA hydrogels:Synthesis and effect of copolymer composition on the drug delivery system. 國立清華大學碩士論文, 2010.
    [30] Lee Y-L. The study of thermosensitive mPEG-polyester hydrogels: Synthesis and characteristic of diblock copolymers with different composition of ester monomers on hydrogel system. 國立清華大學碩士論文, 2011.
    [31] Cheng P-Y. Injectable thermosensitive copolymer mPEG-poly(pyrrolidione-co-lactide) hydrogel: Synthesis and application for cartilage tissue engineering. 國立清華大學碩士論文, 2013.
    [32] Chiang P-R. Structure Design of Thermosensitive Oligopeptide Hydrogel fro Drug Delivery. 國立清華大學博士論文, 2013.
    [33] Ko CY. Photo-crosslinked PCL-PEG-PCL hydrogels as cell carrier for cartilage tissue engineering. 清華大學博士論文, 2013.
    [34] Peng KT, Chen CF, Chu IM, Li YM, Hsu WH, Hsu RW., et al. Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials 2010;31:5227–36.
    [35] Chen CF, Lin CTY, Chu IM. Study of novel biodegradable thermo‐sensitive hydrogels of methoxy‐poly(ethylene glycol)‐block‐polyester diblock copolymers. Polymer International 2010;59:1428–35.
    [36] Chou H-Y, Lin X-Z, Pan W-Y, Wu P-Y, Chang C-M, Lin T-Y, et al. Hydrogel-delivered GM-CSF overcomes nonresponsiveness to hepatitis B vaccine through the recruitment and activation of dendritic cells. J Immunol 2010;185:5468–75.
    [37] Chen C-F, Shen H-H, Lin T-Y, Yu Y-J, Chen W-C, Chu I-M. Studies on the preparation and characterization of mPEG-polyester biodegradable bioglue for bone defect repair. Journal of Medical and Biological Engineering 2011;31:13–7.
    [38] Lai P-L, Hong D-W, Lin CT-Y, Chen L-H, Chen W-J, Chu I-M. Effect of mixing ceramics with a thermosensitive biodegradable hydrogel as composite graft. Composites Part B: Engineering 2012;43:3088–95.
    [39] Lai P-L, Tsai-Yu Lin C, Hong D-W, Yang S-R, Chang Y-H, Chen L-H, et al. Development of bioactive thermosensitive polymer–ceramic composite as bone substitute. Chemical Engineering Science 2013;89:133–41.
    [40] Yu Y-J, Chen C-F, Lin T-Y, Yeh S-J, Wang S-Y, Lai P-L. United States Patent: 7884142 - Biodegradable copolymer and thermosensitive material. 7884142, 2011.
    [41] Jeong Y, Joo MK, Sohn YS, Jeong B. Reverse Thermal Organogel. Adv Mater 2007;19:3947–50.
    [42] Jeong B, Choi YK, Bae YH, Zentner G, Kim SW. New biodegradable polymers for injectable drug delivery systems. J Control Release 1999;62:109–14.
    [43] Lewis DR, Kamisoglu K, York AW, Moghe PV. Polymer-based therapeutics: nanoassemblies and nanoparticles for management of atherosclerosis. WIREs Nanomed Nanobiotechnol 2011
    [44] Nagase K, Kobayashi J, Okano T. Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering. J R Soc Interface 2009;6:S293–S309.
    [45] Bone - Wikipedia
    [46] Raggatt LJ, Partridge NC. Cellular and Molecular Mechanisms of Bone Remodeling. J Biol Chem 2010;285:25103–8.
    [47] Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med 2011;17:1235–41.
    [48] Kearns AE, Kallmes DF. Osteoporosis Primer for the Vertebroplasty Practitioner: Expanding the Focus Beyond Needles and Cement. AJNR Am J Neuroradiol 2008;29:1816–22.
    [49] Logothetis CJ, Lin SH. Osteoblasts in prostate cancer metastasis to bone. Nature Reviews Cancer 2005;5:21–8.
    [50] Bone graft for certain spinal surgery, fracture treatment and oral surgery.
    [51] Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. The Lancet 2011;377:1276–87.
    [52] Parikh SN. Bone graft substitutes: past, present, future. Journal of Postgraduate Medicine 2002;48:142.
    [53] Newman AP. Articular Cartilage Repair. Am J Sports Med 1998;26:309–24.
    [54] Ulrich-Vinther M, Maloney MD, Schwarz EM, Rosier R, O’Keefe RJ. Articular Cartilage Biology. J Am Acad Orthop Surg 2003;11:421–30.
    [55] Sharma A, Wood LD, Richardson JB, Roberts S, Kuiper NJ. Glycosaminoglycan profiles of repair tissue formed following autologous chondrocyte implantation differ from control cartilage. Arthritis Res Ther 2007;9:R79.
    [56] Van der Kraan PM, Buma P, van Kuppevelt T, van Den Berg WB. Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis and Cartilage 2002;10:631–7.
    [57] Lima EG, Bian L, Ng KW, Mauck RL, Byers BA, Tuan RS, et al. The Beneficial Effect of Delayed Compressive Loading on Tissue-Engineered Cartilage Constructs Cultured with TGF-beta3. Osteoarthritis Cartilage 2007;15:1025–33.
    [58] Fan H, Zhang C, Li J, Bi L, Qin L, Wu H, et al. Gelatin Microspheres Containing TGF-β3 Enhance the Chondrogenesis of Mesenchymal Stem Cells in Modified Pellet Culture. Biomacromolecules 2008;9:927–34.
    [59] Petrov PD, Yoncheva K, Mokreva P, Konstantinov S, Irache JM, Müller AHE. Poly(ethylene oxide)-block-poly(n-butyl acrylate)-block-poly(acrylic acid) triblock terpolymers with highly asymmetric hydrophilic blocks: synthesis and aqueous solution properties. Soft Matter 2013;9:8745–53.
    [60] Meerloo J van, Kaspers GJL, Cloos J. Cell Sensitivity Assays: The MTT Assay. In: Cree IA, editor. Cancer Cell Culture, Humana Press; 2011, p. 237–45.
    [61] Hsieh MF, Lin TY, Gau RJ, Chang HT, Lo YL, Lai CH. Biodegradable polymeric nanoparticles bearing stealth PEG shell and lipophilic polyester core. Journal of the Chinese Institute of Chemical Engineers 2005;36:609–15.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE