研究生: |
林才祐 Lin, Tsai-Yu |
---|---|
論文名稱: |
溫感性水膠複合材料於植入式骨組織再生應用之研究 Thermo-sensitive hydrogel composite for implant application in bone regeneration |
指導教授: |
朱一民
Chu, I-Ming |
口試委員: |
李文福
Lee, Wen-Fu 姚少凌 Yao, Chao-Ling 鍾仁傑 Chung, Ren-Jei 陳進富 Chen, Jin-Fu |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 溫感水膠 、硬骨 、軟骨 、複合材料 、再生 |
外文關鍵詞: | thermogel, bone, cartilage, composite, regeneration |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討以可降解性之溫感性水膠,如聚乙二醇-聚乳酸/甘醇酸之雙團聯共聚物,應用於軟硬骨組織再生中之可能性評估。實驗以開環聚合法,製備多種聚乙二醇-聚酯雙團聯共聚物,經由生物相容性評估後,篩選出聚乙二醇-聚乳酸/甘醇酸(mPEG-PLGA),聚乙二醇-聚乳酸/戊內酯(mPEG-PVLA),聚乙二醇-聚乳酸/己內酯(mPEG-PCLA)等三種材料,進行後續之兔子軟硬骨缺損模式試驗。硬骨缺損模式中:先經由四週之評估期後,結果顯示mPEG-PLGA組之硬骨再生能力優於mPEG-PVLA組。因此,後續實驗更進一步的將mPEG-PLGA複合對骨母細胞生長有活性之生醫材料,如:氫氧基磷灰石(Hydroxyapatite, HAp),三鈣磷酸鹽(β-tricalcium phosphate, TCP)。評估複合植入材之物理/化學性質與生物相容性後,植入兔子大腿骨非癒合型之骨缺損之中。植入三個月之後,犧牲動物體,並以電腦斷層掃瞄(μCT),骨質密度儀(BMD),組織切片染色分析。初步結果顯示,mPEG-PLGA複合HAp/TCP(7:3)者,其骨組織再生最優。軟骨缺損模式中:選用mPEG-PCLA複合膠原蛋白二型或TGFβ-3生長因子之複合植入材,植入兔子膝蓋軟骨缺損之中。八週之評估期後,犧牲動物體,並以組織切片染色分析。初步結果顯示,其對軟骨修復有明顯效果。綜由上述之研究成果顯示:溫度敏感型聚乙二醇-聚酯類之雙團聯共聚物,可簡易複合式多種具骨誘導因子,如HAp,TCP與TGF-β3,並且對軟硬骨缺損有修復之成效,適合於臨床醫療上開發。
The objective of this research was to discuss the biodegradable thermo-sensitive hydrogel, such as methoxy poly(ethylene glycol)-poly(lactic-co-glycolic acid), mPEG550-PLGA1405, applies to bone tissue regeneration. Several diblock copolymers were synthesized undergoing ring-opening polymerization process. After biocompatibility test, we chose mPEG-PLGA, mPEG-PVLA ( methoxy poly(ethylene glycol)-poly(lactic acid-co-valerolactone) and mPEG-PCLA ( methoxy poly(ethylene glycol)-poly(lactic acid-co- caprolactone) to utilize in rabbit bone defect model. Four weeks later, the result of bone defect regeneration revealed the mPEG-PLGA implant experiments were superiorly than mPEG-PVLA implant experiments. Moreover, mPEG-PLGA were blending with hydroxyapatite (HAp), β-tricalcium phosphate (TCP) to form into a implant composite for rabbit non-union critical-size model. X-ray evaluated bone formation every four weeks postoperatively. The rabbits were sacrificed 12 weeks postoperatively then their femur bones were harvested for micro-computed tomography(μCT), bone mineral density (BMD) and histology study. The results validated the usage mPEG-PLGA/HAp/TCP(7:3) as bone graft substitute. We chose mPEG-PCLA with collagen type II or TGFβ-3 for rabbit cartilage defect model. After eight weeks implant, the rabbits were sacrificed and evaluated by histology. The results validated mPEG-PCLA/collagen type II/ TGF-β3 composites can enhance cartilage repair. Summarily, the biodegradable thermo-sensitive mPEG-poly ester copolymer composites were suitable for bone/cartilage tissue regeneration.
[1] Williams DF. On the nature of biomaterials. Biomaterials 2009;30:5897–909.
[2] Hermawan H, Dubé D, Mantovani D. Developments in metallic biodegradable stents. Acta Biomaterialia 2010;6:1693–7.
[3] Pattanayak DK, Fukuda A, Matsushita T, Takemoto M, Fujibayashi S, Sasaki K, et al. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments. Acta Biomaterialia 2011;7:1398–406.
[4] Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, et al. Current trends and future perspectives of bone substitute materials – From space holders to innovative biomaterials. Journal of Cranio-Maxillofacial Surgery 2012;40:706–18.
[5] Zimmer G, Rohrhofer A, Lewis K, Goessl A, Hoffmann O. The surface microporosity of ceramic biomaterials influences the resorption capacity of osteoclasts. J Biomed Mater Res 2013;101:3365–71.
[6] Holzapfel BM, Reichert JC, Schantz J-T, Gbureck U, Rackwitz L, Nöth U, et al. How smart do biomaterials need to be? A translational science and clinical point of view. Advanced Drug Delivery Reviews 2013;65:581–603.
[7] 于建華. 人工關節知識與簡介 2003.
[8] Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Progress in Polymer Science 2011;36:1254–76.
[9] Quirk RA, France RM, Shakesheff KM, Howdle SM. Supercritical fluid technologies and tissue engineering scaffolds. Current Opinion in Solid State and Materials Science 2004;8:313–21.
[10] Singh L, Kumar V, Ratner BD. Generation of porous microcellular 85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications. Biomaterials 2004;25:2611–7.
[11] Tai H, Mather ML, Howard D, Wang W, White LJ, Crowe JA, et al. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Eur Cell Mater 2007;14:64–77.
[12] Goh S-K, Bertera S, Olsen P, Candiello JE, Halfter W, Uechi G, et al. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials 2013;34:6760–72.
[13] Becker C, Jakse G. Stem Cells for Regeneration of Urological Structures. European Urology 2007;51:1217–28.
[14] Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010;75:1–18.
[15] Gelperina S, Kisich K, Iseman MD, Heifets L. The Potential Advantages of Nanoparticle Drug Delivery Systems in Chemotherapy of Tuberculosis. Am J Respir Crit Care Med 2005;172:1487–90.
[16] Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annual Review of Biomedical Engineering 2000;2:9–29.
[17] Wichterle O, LíM D. Hydrophilic Gels for Biological Use. Nature 1960;185:117–8.
[18] Kumar A, Srivastava A, Galaev IY, Mattiasson B. Smart polymers: Physical forms and bioengineering applications. Progress in Polymer Science 2007;32:1205–37.
[19] He C, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 2008;127:189–207.
[20] Pelton R. Poly(N-isopropylacrylamide) (PNIPAM) is never hydrophobic. Journal of Colloid and Interface Science 2010;348:673–4.
[21] Schmidt S, Zeiser M, Hellweg T, Duschl C, Fery A, Möhwald H. Adhesion and Mechanical Properties of PNIPAM Microgel Films and Their Potential Use as Switchable Cell Culture Substrates. Adv Funct Mater 2010;20:3235–43.
[22] Bonacucina G, Cespi M, Mencarelli G, Giorgioni G, Palmieri GF. Thermosensitive Self-Assembling Block Copolymers as Drug Delivery Systems. Polymers 2011;3:779–811.
[23] Chen C-C, Fang C-L, Al-Suwayeh SA, Leu Y-L, Fang J-Y. Transdermal delivery of selegiline from alginate–Pluronic composite thermogels. International Journal of Pharmaceutics 2011;415:119–28.
[24] Cespi M, Bonacucina G, Casettari L, Mencarelli G, Palmieri GF. Poloxamer Thermogel Systems as Medium for Crystallization. Pharm Res 2012;29:818–26.
[25] Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997;388:860–2.
[26] Jeong B, Bae YH, Kim SW. Thermoreversible Gelation of PEG−PLGA−PEG Triblock Copolymer Aqueous Solutions. Macromolecules 1999;32:7064–9.
[27] Jeong B, Han Bae Y, Wan Kim S. Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers. Colloids and Surfaces B: Biointerfaces 1999;16:185–93.
[28] Kim MS, Seo KS, Khang G, Cho SH, Lee HB. Preparation of methoxy poly(ethylene glycol)/polyester diblock copolymers and examination of the gel‐to‐sol transition. Journal of Polymer Science Part A: Polymer Chemistry 2004;42:5784–93.
[29] Lee Y-M. Thermosensitive mPEG-PLGA hydrogels:Synthesis and effect of copolymer composition on the drug delivery system. 國立清華大學碩士論文, 2010.
[30] Lee Y-L. The study of thermosensitive mPEG-polyester hydrogels: Synthesis and characteristic of diblock copolymers with different composition of ester monomers on hydrogel system. 國立清華大學碩士論文, 2011.
[31] Cheng P-Y. Injectable thermosensitive copolymer mPEG-poly(pyrrolidione-co-lactide) hydrogel: Synthesis and application for cartilage tissue engineering. 國立清華大學碩士論文, 2013.
[32] Chiang P-R. Structure Design of Thermosensitive Oligopeptide Hydrogel fro Drug Delivery. 國立清華大學博士論文, 2013.
[33] Ko CY. Photo-crosslinked PCL-PEG-PCL hydrogels as cell carrier for cartilage tissue engineering. 清華大學博士論文, 2013.
[34] Peng KT, Chen CF, Chu IM, Li YM, Hsu WH, Hsu RW., et al. Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials 2010;31:5227–36.
[35] Chen CF, Lin CTY, Chu IM. Study of novel biodegradable thermo‐sensitive hydrogels of methoxy‐poly(ethylene glycol)‐block‐polyester diblock copolymers. Polymer International 2010;59:1428–35.
[36] Chou H-Y, Lin X-Z, Pan W-Y, Wu P-Y, Chang C-M, Lin T-Y, et al. Hydrogel-delivered GM-CSF overcomes nonresponsiveness to hepatitis B vaccine through the recruitment and activation of dendritic cells. J Immunol 2010;185:5468–75.
[37] Chen C-F, Shen H-H, Lin T-Y, Yu Y-J, Chen W-C, Chu I-M. Studies on the preparation and characterization of mPEG-polyester biodegradable bioglue for bone defect repair. Journal of Medical and Biological Engineering 2011;31:13–7.
[38] Lai P-L, Hong D-W, Lin CT-Y, Chen L-H, Chen W-J, Chu I-M. Effect of mixing ceramics with a thermosensitive biodegradable hydrogel as composite graft. Composites Part B: Engineering 2012;43:3088–95.
[39] Lai P-L, Tsai-Yu Lin C, Hong D-W, Yang S-R, Chang Y-H, Chen L-H, et al. Development of bioactive thermosensitive polymer–ceramic composite as bone substitute. Chemical Engineering Science 2013;89:133–41.
[40] Yu Y-J, Chen C-F, Lin T-Y, Yeh S-J, Wang S-Y, Lai P-L. United States Patent: 7884142 - Biodegradable copolymer and thermosensitive material. 7884142, 2011.
[41] Jeong Y, Joo MK, Sohn YS, Jeong B. Reverse Thermal Organogel. Adv Mater 2007;19:3947–50.
[42] Jeong B, Choi YK, Bae YH, Zentner G, Kim SW. New biodegradable polymers for injectable drug delivery systems. J Control Release 1999;62:109–14.
[43] Lewis DR, Kamisoglu K, York AW, Moghe PV. Polymer-based therapeutics: nanoassemblies and nanoparticles for management of atherosclerosis. WIREs Nanomed Nanobiotechnol 2011
[44] Nagase K, Kobayashi J, Okano T. Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering. J R Soc Interface 2009;6:S293–S309.
[45] Bone - Wikipedia
[46] Raggatt LJ, Partridge NC. Cellular and Molecular Mechanisms of Bone Remodeling. J Biol Chem 2010;285:25103–8.
[47] Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med 2011;17:1235–41.
[48] Kearns AE, Kallmes DF. Osteoporosis Primer for the Vertebroplasty Practitioner: Expanding the Focus Beyond Needles and Cement. AJNR Am J Neuroradiol 2008;29:1816–22.
[49] Logothetis CJ, Lin SH. Osteoblasts in prostate cancer metastasis to bone. Nature Reviews Cancer 2005;5:21–8.
[50] Bone graft for certain spinal surgery, fracture treatment and oral surgery.
[51] Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. The Lancet 2011;377:1276–87.
[52] Parikh SN. Bone graft substitutes: past, present, future. Journal of Postgraduate Medicine 2002;48:142.
[53] Newman AP. Articular Cartilage Repair. Am J Sports Med 1998;26:309–24.
[54] Ulrich-Vinther M, Maloney MD, Schwarz EM, Rosier R, O’Keefe RJ. Articular Cartilage Biology. J Am Acad Orthop Surg 2003;11:421–30.
[55] Sharma A, Wood LD, Richardson JB, Roberts S, Kuiper NJ. Glycosaminoglycan profiles of repair tissue formed following autologous chondrocyte implantation differ from control cartilage. Arthritis Res Ther 2007;9:R79.
[56] Van der Kraan PM, Buma P, van Kuppevelt T, van Den Berg WB. Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis and Cartilage 2002;10:631–7.
[57] Lima EG, Bian L, Ng KW, Mauck RL, Byers BA, Tuan RS, et al. The Beneficial Effect of Delayed Compressive Loading on Tissue-Engineered Cartilage Constructs Cultured with TGF-beta3. Osteoarthritis Cartilage 2007;15:1025–33.
[58] Fan H, Zhang C, Li J, Bi L, Qin L, Wu H, et al. Gelatin Microspheres Containing TGF-β3 Enhance the Chondrogenesis of Mesenchymal Stem Cells in Modified Pellet Culture. Biomacromolecules 2008;9:927–34.
[59] Petrov PD, Yoncheva K, Mokreva P, Konstantinov S, Irache JM, Müller AHE. Poly(ethylene oxide)-block-poly(n-butyl acrylate)-block-poly(acrylic acid) triblock terpolymers with highly asymmetric hydrophilic blocks: synthesis and aqueous solution properties. Soft Matter 2013;9:8745–53.
[60] Meerloo J van, Kaspers GJL, Cloos J. Cell Sensitivity Assays: The MTT Assay. In: Cree IA, editor. Cancer Cell Culture, Humana Press; 2011, p. 237–45.
[61] Hsieh MF, Lin TY, Gau RJ, Chang HT, Lo YL, Lai CH. Biodegradable polymeric nanoparticles bearing stealth PEG shell and lipophilic polyester core. Journal of the Chinese Institute of Chemical Engineers 2005;36:609–15.