簡易檢索 / 詳目顯示

研究生: 丁玉城
Ding, Yu-Cheng
論文名稱: 使用正交相移鍵控調變與線性最小均方誤差偵測之MIMO-NOMA系統的位元錯誤率分析和功率分配
Bit-Error-Rate Analysis and Power Allocation for a MIMO-NOMA System Using QPSK Modulation and Linear Minimum Mean-Squared Error Detection
指導教授: 王晉良
Wang, Chin-Liang
口試委員: 陳永芳
Chen, Yung-Fang
古聖如
Ku, Sheng-Ju
黃昱智
Huang, Yu-Chih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 43
中文關鍵詞: 非正交多重接取線性最小均方誤差偵測多輸入多輸出系統位元錯誤率低複雜度
外文關鍵詞: Non Orthogonal Multiple access, Linear Minimum Mean-Squared Error Detection, MIMO system, Bit Error Rate, Low complexity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們探討一個包含兩個使用者之下行多輸入多輸出非正交多重接取(MIMO-NOMA)系統的位元錯誤率(BER)分析,其中發射端採用正交相移鍵控(QPSK)調變,而接收端則使用線性最小均方誤差偵測。不同於現有的單輸入單輸出 NOMA 系統之相關分析研究,本論文同時考量了 MIMO-NOMA 傳輸所引起的多重接取干擾以及連續干擾消除所造成的錯誤傳播效應。我們首先針對完美通道狀態信息(CSI)情境推導使用者的 BER 公式,然後在已知通道估測均方誤差的情況下,將推導方式擴展至非完美 CSI 情境,以獲得使用者的 BER 上界公式。根據這些 BER 結果,我們建立兩個功率分配優化問題,以分別最小化平均 BER 和最小化平均 BER 上界,再藉由現有之具有高複雜度的迭代式演算法求得理論最佳解。為了簡化數學運算,我們進而使用最小平方曲線擬合方法來逼近兩個優化問題中的平均 BER 和平均 BER 上界,並據以設計兩個閉合式的功率分配解決方案。電腦模擬結果顯示,所推導出的 MIMO-NOMA 系統之使用者 BER 公式足夠準確,且每個閉合式功率分配解決方案之 BER 效能僅略遜於理論最佳解之效能,但卻具有明顯較低的運算複雜度。相較於另一種基於廣義奇異值分解和訊號對干擾雜訊比平衡技巧之迭代式 MIMO-NOMA 功率分配演算法,所提出之閉合式解決方案亦可大幅降低複雜度,並達到接近的平均 BER 效能。


    In this thesis, we investigate bit-error-rate (BER) performance for a two-user downlink multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) system. The quadrature phase shift keying (QPSK) modulation is used at the transmitter, and the linear minimum mean-squared error detection is adopted at the receiver sides. Unlike existing related works for single-input single-output NOMA systems, this thesis takes account of both multiple access interference in MIMO-NOMA transmission and error propagation from successive interference cancellation. We first derive BER expressions for both users under the availability of perfect channel state information (CSI), and then extend the derivations to an imperfect CSI scenario to obtain BER upper bounds by assuming that the mean-squared errors of channel estimation are known a priori. Based on the BER results, two power allocation optimization problems are respectively formulated for minimization of the average BER and for minimization of the average BER upper bound, where the theoretically optimal solutions can be found by well-known complicated iterative algorithms. To simplify the computational complexity, we further use the least-squares curve fitting method to approximate the average BER and the average BER upper bound in both optimization problems and then design two closed-form power allocation solutions accordingly. Computer simulation results show that the derived BER expressions are sufficiently accurate and each of the closed-form solutions offers slightly worse performance with much lower complexity than the corresponding theoretically optimal one for the MIMO-NOMA system. As compared with another iterative MIMO-NOMA power allocation algorithm based on generalized singular value decomposition and signal-to-interference-plus-noise ratio balancing, the proposed two closed-form schemes also achieve close average BER performance with significantly reduced complexity.

    Contents Abstract i Contents ii List of Figures iii List of Tables iv I. Introduction 1 II. System Model 4 III. BER Analysis under Perfect CSI 6 A. BER Expressions for a Two-User SISO-NOMA System 6 B. Linear MMSE Detection for the Two-User MIMO-NOMA System 12 C. A BER Expression for User 2 in the Two-User MIMO-NOMA System 15 D. A BER Expression for User 1 in the Two-User MIMO-NOMA System 16 IV. BER Analysis under Imperfect CSI 19 V. Power Allocation Based on the BER Analysis Results 23 A. Power Allocation Problem Formulations 23 B. Simplified BER Expressions and BER Upper Bounds 23 C. Closed-Form Power Allocation Solutions 26 D. Complexity Analysis 27 Ⅵ. Simulation Results 30 A. Simulation Arrangements 30 B. Validation of the BER Expressions and the BER Least-Squares Curve Fitting 30 C. Performance Comparisons with Other Methods 31 Ⅶ. Conclusion 39 References 40

    [1] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Netw., vol. 34, no. 3, pp. 1–9, May/Jun., 2020.
    [2] C. D. Alwis, A. Kalla, Q.-V. Pham, P. Kumar, K. Dev, W.-J. Hwang, and M. Liyanage, “Survey on 6G frontiers: Trends, applications, requirements, technologies and future research,” IEEE Open J. Commun. Soc., vol. 2, pp. 836–886, Apr. 2021.
    [3] W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards 6G: A comprehensive survey,” IEEE Open J. Commun. Soc., vol. 2, pp. 334–366, Feb. 2021.
    [4] S. M. R. Islam, N. Avazov, O. A. Dobre, and K.-S. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges,” IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 721–742, 2nd Quart., 2017.
    [5] B. Makki, K. Chitti, A. Behravan, and M.-S. Alouini, “A survey of NOMA: Current status and open research challenges,” IEEE Open J. Commun. Soc., vol. 1, pp. 179–189, Feb. 2020.
    [6] I. Budhiraja, N. Kumar, S. Tyagi, S. Tanwar, Z. Han, M. J. Piran, and D. Y. Suh, “A systematic review on NOMA variants for 5G and beyond,” IEEE Access, vol. 9, pp. 85573–85644, Jun. 2021.
    [7] A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” in Proc. Int. Symp. Intell. Signal Process. Commun. Syst. (ISPACS), Okinawa, Japan, Nov. 2013, pp. 770–774.
    [8] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp.1501–1505, Dec. 2014.
    [9] Q. Sun, S. Han, C. I, and Z. Pan, “On the ergodic capacity of MIMO NOMA systems,” IEEE Wireless Commun. Lett., vol. 4, no. 4, pp. 405–408, Aug. 2015.
    [10] C.-L. Wang, J.-Y. Chen, and Y.-J. Chen, “Power allocation for a downlink non-orthogonal multiple access system,” IEEE Wireless Commun. Lett., vol. 5, no. 5, pp. 532–535, Oct. 2016.
    [11] J. Choi, “Power allocation for max-sum rate and max-min rate proportional fairness in NOMA,” IEEE Commun. Lett., vol. 20, no. 10, pp. 2055–2058, Oct. 2016.
    [12] X. Wang, J. Wang, L. He, and J. Song, “Outage analysis for downlink NOMA with statistical channel state information,” IEEE Wireless Commun. Lett., vol. 7, no. 2, pp. 142–145, Apr. 2018.
    [13] S. Timotheou and I. Krikidis, “Fairness for non-orthogonal multiple access in 5G systems,” IEEE Signal Process. Lett., vol. 22, no. 10, pp. 1647–1651, Oct. 2015.
    [14] K. Senel and S. Tekinay, “Optimal power allocation in NOMA systems with imperfect channel estimation,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Singapore, Dec. 2017, pp. 1–5.
    [15] C.-L. Wang, Y.-C. Wang, and P. Xiao, “Power allocation based on SINR balancing for NOMA systems with imperfect channel estimation,” in Proc. 13th Int. Conf. Signal Process. Commun. Syst. (ICSPCS), Gold Coast, Australia, Dec. 2019, pp. 1–6.
    [16] M. F. Hanif and Z. Ding, “Robust power allocation in MIMO-NOMA systems,” IEEE Wireless Commun. Lett., vol. 8, no. 6, pp. 1541–1545, Dec. 2019.
    [17] W. Cai, C. Chen, L. Bai, Y. Jin, and J. Choi, “User selection and power allocation schemes for downlink NOMA systems with imperfect CSI,” in Proc. IEEE 84th Veh. Technol. Conf. (VTC-Fall), Montreal, Canada, Sep. 2016, pp. 1–5.
    [18] H. Wang, Z. Zhang, and X. Chen, “Energy-efficient power allocation for non-orthogonal multiple access with imperfect successive interference cancellation,” in Proc. 9th Int. Conf. Wireless Commun. Signal Process. (WCSP), Nanjing, China, Oct. 2017, pp. 1–6.
    [19] C.-L. Wang, C.-C. Hsieh, Y.-C. Ding, and S.-H. Huang, “Power allocation for downlink NOMA systems with imperfect channel estimation,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Nanjing, China, Mar./Apr. 2021. pp. 1–7.
    [20] T. Assaf, A. Al-Dweik, M. E. Moursi, and H. Zeineldin, “Exact BER performance analysis for downlink NOMA systems over Nakagami-m fading channels,” IEEE Access, vol. 7, pp. 134539–134555, Sep. 2019.
    [21] J. Garnier, A. Fabre, H. Fares, and R. Bonnefoi, “On the performance of QPSK modulation over downlink NOMA: From error probability derivation to SDR-based validation,” IEEE Access, vol. 8, pp. 66495–66507, 2020.
    [22] Y. Wang, J. Wang, D. W. K. Ng, R. Schober, and X. Gao, “A minimum error probability NOMA design,” IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4221–4237, Jul. 2021.
    [23] M. Aldababsa, C. Göztepe, G. K. Kurt, and O. Kucur, “Bit error rate for NOMA network,” IEEE Commun. Lett., vol. 24, no. 6, pp. 1188–1191, Jun. 2020.
    [24] T. Assaf, A. Al-Dweik, M. E. Moursi, H. Zeineldin, and M. Al-Jarrah, “Exact bit error-rate analysis of two-user NOMA using QAM with arbitrary modulation orders,” IEEE Commun. Lett., vol. 24, no. 12, pp. 2705–2709, Dec. 2020.
    [25] W. Han, X. Ma, D. Tang, and N. Zhao, “Study of SER and BER in NOMA systems,” IEEE Trans. Veh. Technol., vol. 70, no. 4, pp. 3325–3340, Apr. 2021.
    [26] T. Yoo and A. Goldsmith, "Capacity and power allocation for fading MIMO channels with channel estimation error," IEEE Trans. Inf.. Theory, vol. 52, no. 5, pp. 2203–2214, May 2006.
    [27] S. Roy and P. Fortier, “Maximal-ratio combining architectures and performance with channel estimation based on a training sequence,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 1154–1164, Jul. 2004.
    [28] H. Sun, B. Xie, R. Q. Hu, and G. Wu, “Non-orthogonal multiple access with SIC error propagation in downlink wireless MIMO networks,” in Proc. IEEE 84th Veh. Technol. Conf. (VTC-Fall), Montreal, Canada, Sep. 2016, pp. 1–5.
    [29] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River, NJ, USA: Prentice-Hall, 1993.
    [30] H. V. Poor and S. Verdu, “Probability of error in MMSE multiuser detection,” IEEE Trans. Inf. Theory, vol. 43, pp. 858–871, May 1997.
    [31] X. Wang and H. V. Poor, “Iterative (turbo) soft interference cancellation and decoding for coded CDMA,” IEEE Trans. Commun., vol. 47, no. 7, pp. 1046–1061, Jul. 1999.
    [32] R. H. Byrd, J. C. Gilbert, and J. Nocedal, “A trust region method based on interior point techniques for nonlinear programming,” Math. Program., vol 89, no. 1, pp. 149–185, Nov. 2000.
    [33] R. P. Brent, Algorithms for Minimization without Derivatives. Englewood Cliffs, NJ, USA: Prentice-Hall, 1973.
    [34] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge, U.K.: Cambridge Univ. Press, 2005.
    [35] G. Strang, Introduction to Linear Algebra, int. ed. Wellesley, MA, Wellesley-Cambridge Press, 2019.
    [36] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD, USA: Johns Hopkins Univ. Press, 1996.
    [37] J. Huang, V.G. Subramanian, R. Agrawal and R. A. Berry, “Downlink scheduling and resource allocation for OFDM systems,” IEEE Trans. Wireless Commun., vol. 8, no. 1, pp. 288–296, Jan. 2009.
    [38] Z. Bai, “The CSD, GSVD, their applications and computations,” IMA Preprint Series, no. 958, Inst. Math. its Appl., Univ. Minnesota, Minneapolis, MN, USA, Apr. 1992.
    [39] C. C. Paige, “Computing the generalized singular value decomposition,” SIAM J. Sci. Stat. Comput, vol. 7, no. 4, pp.1126 – 1146, Oct. 1986.

    QR CODE