簡易檢索 / 詳目顯示

研究生: 蘇芳瑩
Su, Fang-Ying
論文名稱: 利用耗散粒子動力學預測星狀嵌段共聚物(PEO-PLA)n形態於藥物輸送系統下之應用
Morphology Prediction of Star-shaped Block Copolymers (PEO-PLA)n for Drug Delivery by Dissipative Particle Dynamics Simulation
指導教授: 張榮語
Chang, Rong-Yeu
口試委員: 許嘉翔
Hsu, Chia-Hsiang
曾煥錩
Tseng, Huan-Chang
吳建興
Wu, Jian-Sing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 71
中文關鍵詞: 耗散粒子動力學星狀嵌段共聚物藥物輸送藥物裝載效率
外文關鍵詞: Dissipative particle dynamics, Star-shaped block copolymer, Drug delivery, Drug loading efficiency
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藥物載體為微胞很重要的應用之一,將有助於增加藥物溶解度及保護藥物失活等。利用耗散粒子動力學模擬藥物輸送系統雖已發展相當成熟,但大部分著重於藥物釋放,因此本研究將針對藥物裝載過程。本研究以星狀嵌段共聚物作為高分子材料,並探討其與線性嵌段共聚物相較之優劣。因為黏度為影響藥物裝載效率因子之一,將另外探討在剪切流場下,流場對高分子黏度的影響。本研究之藥物載體材料(PEO-PLA)n,聚乳酸(Poly(D-L lactide acid),PLA)具有可降解的特性,而聚乙二醇(Poly(ethylene oxide),PEO)具有溶解度高、無毒以及較大的流體動力學半徑,因此有助於腎臟代謝等特性。

    研究結果為於稀薄溶液下,線性嵌段共聚物透過自組裝行為產生球狀微胞,而星狀嵌段共聚物產生多核微胞、甜甜圈微胞、橢圓微胞及網狀結構。當星狀共聚物接枝數越多時,有較低的黏度及較佳的裝載效率;嵌段共聚物中PLA嵌段比例較大時,則有較佳的裝載效率。


    Amphiphilic diblock copolymer self-assemble into micelle and vesicle which have been extensively studied as carriers. Carriers have ability to increase drug solubility, exhibit controlled release and protect drug from inactivation. Until now, dissipative particle dynamics (DPD) used to simulate drug delivery systems has been fully developed. This work mainly study linear block copolymers and star-shaped block copolymers with different arms and compare their performance to each other. Because the viscosity can affect drug loading efficiency, this work will investigate under shear flow system and analyze their viscosity. In this work, biodegradable polymers based on star-shaped (PEO-PLA)n will be material of drug carrier. Poly(D-L lactide acid) (PLA) is biodegradable polymer which is one mechanism of drug releasing. Poly(ethylene oxide (PEO) exhibit a high solubility, non-toxic and larger hydrodynamic radius, thus contributed to renal excretion and other characteristics.

    The systems of simulation are in dilute solution in this work. The results indicate that linear block copolymers will all self-assemble into spherical micelles. And star-shaped block copolymers will self-assemble into multicore micelle, donut micelle and net structure by changing ratio of the PLA block. When the star-shaped block copolymers have more arms, viscosity will be lower and drug loading efficiency will be better. Larger ratio of the PLA block, there is a better drug loading efficiency.

    目錄 摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 耗散粒子動力學模擬簡介 4 第二章 文獻回顧 6 2.1 耗散粒子動力學模擬之文獻回顧 6 2.2 星狀聚合物之文獻回顧 8 2.3 雙嵌段共聚物於剪切流場下 13 2.4 藥物輸送之文獻回顧 15 第三章 研究方法 19 3.1 耗散粒子動力學基本理論 19 3.1.1 耗散粒子動力學作用力場 21 3.1.2 運動方程式的數值積分方法 24 3.1.3 耗散粒子動力學模擬流程架構 25 3.1.4 週期性邊界 27 3.1.5 最小鏡像法 29 3.2 非平衡耗散粒子動力學模擬方法 30 3.2.1 SLLOD演算法 31 3.2.2 Lees-Edwards週期性邊界與最小鏡像法 32 3.3 黏度計算方法 34 3.4 藥物裝載效率計算方法 34 第四章 模擬系統架構驗證 36 4.1 系統架構 36 4.2 系統驗證 37 4.2.1 耗散粒子動力學單顆粒子系統驗證 37 4.2.2 耗散粒子動力學雙嵌段共聚物系統驗證 39 4.2.3 耗散粒子動力學星狀共聚物系統驗證 42 4.2.4 耗散粒子動力學藥物輸送系統驗證 45 4.2.5 具剪切流場之雙嵌段共聚物系統驗證 48 第五章 結果與討論 51 5.1 藥物載體形態之預測 51 5.1.1 線性雙嵌段共聚物A4Bx於水溶液中之形態 53 5.1.2 星狀嵌段共聚物(A4Bx)3於水溶液中之形態 54 5.1.3 星狀嵌段共聚物(A4Bx)4於水溶液中之形態 55 5.1.4 星狀嵌段共聚物(A4Bx)6於水溶液中之形態 56 5.1.5 星狀嵌段共聚物(A4Bx)8於水溶液中之形態 57 5.1.6 形態相圖統整與形成機制探討 58 5.2 嵌段共聚物於剪切流場下黏度計算 60 5.3 藥物輸送之裝載系統 62 5.3.1 改變嵌段共聚物接枝數對藥物裝載的影響 63 5.3.2 改變嵌段共聚物嵌段比對藥物裝載的影響 65 第六章 結論與未來展望 66 參考文獻 68 圖目錄 圖 1.1.1雙嵌段共聚物經由自組裝行為產生的相形態示意圖 1 圖 1.1.2藥物Nifedipine分子結構式 2 圖 1.3.1粗粒化模型示意圖 4 圖 2.1.1積分時距與控溫效果 6 圖 2.1.2改變雙嵌段共聚物比例形態結果圖 7 圖 2.1.3雙嵌段共聚物形態圖由自洽平均場理論 7 圖 2.2.1不同結構組成的星狀聚合物 8 圖 2.2.2文獻中星狀共聚物ABC結構 9 圖 2.2.3改變星狀共聚物B鏈段的平衡形態圖 9 圖 2.2.4改變星狀共聚物C鏈段的平衡形態圖 9 圖 2.2.5文獻中星狀共聚物AB2結構 10 圖 2.2.6 星狀共聚物A2B4B4自組裝過程圖 11 圖 2.2.7 星狀共聚物A12B4B4自組裝過程圖. 11 圖 2.2.8文獻中星狀嵌段共聚物示意圖 12 圖 2.2.9 (AB)14改變B嵌段的微胞形態結果 12 圖 2.3.1施加剪切流場於初始狀態不同之層板隨時間變化圖 13 圖 2.3.2加入剪切流場後的形態變化 14 圖 2.4.1微胞種類示意圖 15 圖 2.4.2藥物分子裝載效率及雙嵌段共聚物聚集數統計圖 15 圖 2.4.3藥物分子裝載效率實驗與模擬結果比較圖 16 圖 2.4.4 PLA3PEO7載藥情形及其形態變化 16 圖 2.4.5 PLA8PEO12PLA8載藥情形及其形態變化 17 圖 2.4.6文獻中線性與星狀嵌段共聚物釋放效率圖 18 圖 2.4.7文獻中星狀嵌段聚合物PEO-PLA 18 圖 3.1.1截斷半徑示意圖 20 圖 3.1.2耗散粒子動力學模擬流程圖 26 圖 3.1.3二維週期性邊界示意圖 27 圖 3.1.4一維週期性邊界示意圖 28 圖 3.1.5鏡像一維示意圖( rij < L/2 ) 29 圖 3.1.6鏡像一維示意圖( rij > L/2 ) 29 圖 3.2.1Couette flow示意圖 30 圖 3.2.2Lees-Edwards週期性邊界系統移動二維示意圖 32 圖 3.2.3Lees-Edwards週期性邊界粒子位移示意圖 33 圖 3.4.1藥物裝載過程示意圖 34 圖 4.1.1驗證系統架構示意圖 36 圖 4.2.1耗散粒子動力學單顆粒子系統徑向分布驗證圖 38 圖 4.2.2文獻中雙嵌段共聚物PLA3PEO7示意圖 45 圖 4.2.3文獻中雙嵌段共聚物A5B5示意圖 48 圖 5.1.1高分子結構(A4Bx)n示意圖 51 圖 5.1.2線性嵌段共聚物A4Bx於各嵌段比之形態 53 圖 5.1.3星狀嵌段共聚物(A4Bx)3於各嵌段比之形態 54 圖 5.1.4星狀嵌段共聚物(A4Bx)4於各嵌段比之形態 55 圖 5.1.5星狀嵌段共聚物(A4Bx)6於各嵌段比之形態 56 圖 5.1.6星狀嵌段共聚物(A4Bx)8於各嵌段比之形態 57 圖 5.1.7嵌段共聚物(A4Bx)n之形態相圖 58 圖 5.1.8條狀多核微胞之形成機制 59 圖 5.1.9甜甜圈微胞之形成機制 59 圖 5.2.1不同接枝數在剪切流場系統下之黏度分布圖 61 圖 5.3.1嵌段共聚物接枝數對藥物裝載影響結果比較圖 63 圖 5.3.2嵌段共聚物接枝數對藥物裝載影響初期比較圖 63 圖 5.3.3嵌段共聚物嵌段比對藥物裝載影響結果比較圖 65 表目錄 表 3.2.1EDPD與NEDPD之差異比較 30 表 4.2.1耗散粒子動力學單顆粒子系統參數設定 37 表 4.2.2文獻中各嵌段比例下及其平衡像形態結果 39 表 4.2.3雙嵌段共聚物系統參數設定 39 表 4.2.4雙嵌段共聚物系統平衡形態驗證圖 40 表 4.2.5星狀共聚物系統參數設定 42 表 4.2.6星狀共聚物系統之斥力參數表 42 表 4.2.7星狀共聚物系統平衡形態驗證圖 43 表 4.2.8藥物輸送系統參數設定 45 表 4.2.9藥物輸送系統之斥力參數表 45 表 4.2.10藥物輸送載藥系統驗證圖 46 表 4.2.11具剪切流場雙嵌段共聚物系統參數設定 48 表 4.2.12具剪切流場雙嵌段共聚物系統驗證圖 49 表 5.1.1藥物載體形態預測系統之參數設定 52 表 5.1.2藥物載體形態預測系統之斥力參數設定 52 表 5.2.1剪切流場系統之參數設定 60 表 5.3.1藥物輸送系統之參數設定 62 表 5.3.2藥物輸送系統之斥力參數設定 62

    參考文獻
    1.Ward, M.D. and M.J. Horner, Structure and order in soft matter: symmetry transcending length scale. Crystengcomm, 2004. 6: p. 401-407.
    2.Jie, P., S.S. Venkatraman, F. Min, B.Y.C. Freddy, and G.L. Huat, Micelle-like nanoparticles of star-branched PEO-PLA copolymers as chemotherapeutic carrier. Journal of Controlled Release, 2005. 110(1): p. 20-33.
    3.Luan, X.S. and R. Bodmeier, In situ forming microparticle system for controlled delivery of leuprolide acetate: Influence of the formulation and processing parameters. European Journal of Pharmaceutical Sciences, 2006. 27(2-3): p. 143-149.
    4.Efentakis, M. and A. Koutlis, Release of furosemide from multiple-unit and single-unit preparations containing different viscosity grades of sodium alginate. Pharmaceutical Development and Technology, 2001. 6(1): p. 91-98.
    5.Hoogerbrugge, P.J. and J.M.V.A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhysics Letters, 1992. 19(3): p. 155-160.
    6.Horn, J.N., J.D. Sengillo, D.J. Lin, T.D. Romo, and A. Grossfield, Characterization of a potent antimicrobial lipopeptide via coarse-grained molecular dynamics. Biochimica Et Biophysica Acta-Biomembranes, 2012. 1818(2): p. 212-218.
    7.Espanol, P. and P. Warren, Statistical-Mechanics of Dissipative Particle Dynamics. Europhysics Letters, 1995. 30(4): p. 191-196.
    8.Groot, R.D. and P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 1997. 107(11): p. 4423-4435.
    9.Groot, R.D. and T.J. Madden, Dynamic simulation of diblock copolymer microphase separation. Journal of Chemical Physics, 1998. 108(20): p. 8713-8724.
    10.Matsen, M.W. and F.S. Bates, Unifying weak- and strong-segregation block copolymer theories. Macromolecules, 1996. 29(4): p. 1091-1098.
    11.Lin, B., H.D. Zhang, F. Qiu, and Y.L. Yang, Self-Assembly of ABC Star Triblock Copolymer Thin Films Confined with a Preferential Surface: A Self-Consistent Mean Field Theory. Langmuir, 2010. 26(24): p. 19033-19044.
    12.Kirkensgaard, J.J.K., Striped networks and other hierarchical structures in A(m)B(m)C(n)(2m+n)-miktoarm star terpolymer melts. Physical Review E, 2012. 85(3).
    13.Chen, H.Y. and E. Ruckenstein, Formation of complex colloidal particles: morphologies and mechanisms. Soft Matter, 2012. 8(34): p. 8911-8916.
    14.Xia, J. and C.L. Zhong, Dissipative particle dynamics study of the formation of multicompartment micelles from ABC star triblock copolymers in water. Macromolecular Rapid Communications, 2006. 27(14): p. 1110-1114.
    15.Sheng, Y.J., C.H. Nung, and H.K. Tsao, Morphologies of star-block copolymers in dilute solutions. Journal of Physical Chemistry B, 2006. 110(43): p. 21643-21650.
    16.Liu, W., H.J. Qian, Z.Y. Lu, Z.S. Li, and C.C. Sun, Dissipative particle dynamics study on the morphology changes of diblock copolymer lamellar microdomains due to steady shear. Physical Review E, 2006. 74(2).
    17.Lisal, M. and J.K. Brennan, Alignment of lamellar diblock copolymer phases under shear: Insight from dissipative particle dynamics simulations. Langmuir, 2007. 23(9): p. 4809-4818.
    18.Peppas, N.A. and R. Langer, New Challenges in Biomaterials. Science, 1994. 263(5154): p. 1715-1720.
    19.Guo, Y.Y., Z.W. Ma, Z.J. Ding, and R.K.Y. Li, Study of hierarchical microstructures self-assembled by pi-shaped ABC block copolymers in dilute solution using self-consistent field theory. Journal of Colloid and Interface Science, 2012. 379: p. 48-55.
    20.Khoe, U., Y.L. Yang, and S.G. Zhang, Self-Assembly of Nanodonut Structure from a Cone-Shaped Designer Lipid-like Peptide Surfactant. Langmuir, 2009. 25(7): p. 4111-4114.
    21.Luo, Z.L. and J.W. Jiang, pH-sensitive drug loading/releasing in amphiphilic copolymer PAE-PEG: Integrating molecular dynamics and dissipative particle dynamics simulations. Journal of Controlled Release, 2012. 162(1): p. 185-193.
    22.Posocco, P., M. Fermeglia, and S. Pricl, Morphology prediction of block copolymers for drug delivery by mesoscale simulations. Journal of Materials Chemistry, 2010. 20(36): p. 7742-7753.
    23.Chen, H.Y. and E. Ruckenstein, Formation and Degradation of Multicomponent Multicore Micelles: Insights from Dissipative Particle Dynamics Simulations. Langmuir, 2013. 29(18): p. 5428-5434.
    24.Choi, Y.R., Y.H. Bae, and S.W. Kim, Star-shaped poly(ether-ester) block copolymers: Synthesis, characterization, and their physical properties. Macromolecules, 1998. 31(25): p. 8766-8774.
    25.Jeong, B., Y.K. Choi, Y.H. Bae, G. Zentner, and S.W. Kim, New biodegradable polymers for injectable drug delivery systems. Journal of Controlled Release, 1999. 62(1-2): p. 109-114.
    26.Velazquez, M.E., A. Gama-Goicochea, M. Gonzalez-Melchor, M. Neria, and J. Alejandre, Finite-size effects in dissipative particle dynamics simulations. Journal of Chemical Physics, 2006. 124(8).
    27.Periodic Boundary Condition. Available from: http://matdl.org/repository/view/matdl:857.
    28.Evans, D.J. and G.P. Morriss, Nonlinear-Response Theory for Steady Planar Couette-Flow. Physical Review A, 1984. 30(3): p. 1528-1530.
    29.Lees, A.W. and S.F. Edwards, Computer Study of Transport Processes under Extreme Conditions. Journal of Physics Part C Solid State Physics, 1972. 5(15): p. 1921-&.
    30.Hoover, W.G., D.J. Evans, R.B. Hickman, A.J.C. Ladd, W.T. Ashurst, and B. Moran, Lennard-Jones Triple-Point Bulk and Shear Viscosities - Green-Kubo Theory, Hamiltonian-Mechanics, and Non-Equilibrium Molecular-Dynamics. Physical Review A, 1980. 22(4): p. 1690-1697.
    31.Moore, J.D., S.T. Cui, H.D. Cochran, and P.T. Cummings, Transient rheology of a polyethylene melt under shear. Physical Review E, 1999. 60(6): p. 6956-6959.
    32.Liu, J.B., Y.H. Xiao, and C. Allen, Polymer-drug compatibility: A guide to the development of delivery systems for the anticancer agent, Ellipticine. Journal of Pharmaceutical Sciences, 2004. 93(1): p. 132-143.
    33.Drug Loading. Available from: http://english.ibp.cas.cn/rh/rp/201003/t20100311_51355.html.
    34.Chen, L., T. Jiang, J.P. Lin, and C.H. Cai, Toroid Formation through Self-Assembly of Graft Copolymer and Homopolymer Mixtures: Experimental Studies and Dissipative Particle Dynamics Simulations. Langmuir, 2013. 29(26): p. 8417-8426.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE