簡易檢索 / 詳目顯示

研究生: 李佳縉
Li, Chia-Chin
論文名稱: 用於電漿光熱治療之熱應變光聲溫度造影技術
Thermal Strain Based Photoacoustic Temperature Imaging for Plasmonic Photothermal Therapy
指導教授: 李夢麟
Li, Meng-Lin
口試委員: 劉浩澧
Liu, Hao-Li
葉秩光
Yeh, Chih-Kuang
沈哲州
Shen, Che-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 74
中文關鍵詞: 光聲光熱治療金奈米桿熱應變溫度影像
外文關鍵詞: photoacoustic, photothermal therapy, AuNRs, thermal strain, temperature imaging
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在以金奈米粒子為輔之電漿光熱治療中,基於光聲造影之溫度估測技術與現有的技術相較之下有著高對比度、非侵入式、二維造影、以及不易受到低回波組織影響等優勢。本論文開發一套光聲溫度造影技術-基於熱應變之光聲溫度造影技術,相較於現有的基於訊號強度之光聲溫度造影技術而言,該光聲溫度造影技術能夠克服現有技術受限於脈衝雷射能量不穩定的缺點以及用於電漿光熱治療的金奈米粒子熱穩定性不足之限制。首先利用電腦模擬模仿局部加溫情況下的光聲訊號以及光吸收物分佈狀況等因素對上述兩種光聲溫度估測的可行性以及影響,而後根據在溫度變化下的A-line光聲訊號實驗之訊號強度及其熱應變跟實際溫度的關係作為訊號強度與熱應變資訊換算成溫度時的依據,並討論適合用於互相關分析的參數,最後利用光聲陣列造影實驗架構配合連續波雷射系統在金奈米桿仿體上進行電漿光熱治療實驗以驗證上述兩種光聲溫度造影的可行性並分析其差異,藉此說明基於熱應變之光聲溫度造影技術在10℃溫度變化範圍內可達到0.17℃的溫度解析度,相較於另一者是更為穩定、精確、適合發展於臨床電漿光熱治療的溫度造影技術。


    Photoacoustic (PA) temperature estimation for gold nanoparticles based plasmonic photothermal therapy (PPTT) has advantages, such as high intrinsic contrast, non-invasive, two-dimension imaging, and insusceptible for hypoechoic tissue that are unavailable in current temperature measurement technologies. In this thesis, we developed a thermal strain based PA temperature imaging technique based on cross-correlation algorithm. Unlike the existing amplitude based PA temperature estimation, the thermal strain based PA temperature estimation is unaffected by problems such as fluctuation of pulse laser energy and lack of photothermal stability of gold nanoparticles for PPTT. First, we proved the feasibility of thermal strain based PA temperature imaging using computer simulations, and then we confirmed the effects of varying distributions of optical absorbers. Next we built temperature calibration tables of amplitude and thermal strain based PA estimation using data obtained in PA A-line experiments. According to the above-mentioned data, we optimized the parameters of cross-correlation analysis. In phantom experiments of plasmonic photothermal therapy, we verified the feasibility and performance of amplitude and thermal strain based PA temperature imaging on a photoacoustic array imaging system. The experimental result of thermal strain based PA temperature imaging indicated a temperature resolution of 0.17℃ for 10℃ temperature-changes. To sum up, the thermal strain based PA temperature estimation is a more stable and accurate temperature monitoring technique for plasmonic photothermal therapy than the amplitude based PA temperature estimation.

    中文摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 光聲造影原理簡介 2 1.2 即時性溫度影像估測於電漿光熱治療之應用 3 1.2.1 電漿光熱治療簡介 3 1.2.2 常見之溫度估測技術 6 1.2.3 基於訊號強度之光聲溫度估測 8 1.3 研究動機與目的 15 1.4 論文架構 16 第二章 材料與方法 17 2.1 基於熱應變估測之光聲溫度影像估測法 17 2.1.1 基於熱應變之光聲溫度影像估測之原理 17 2.1.2 基於互相關分析法之熱應變估測 21 2.1.3 影響定量光聲溫度造影因素之探討 26 2.2基於訊號強度與基於熱應變之光聲溫度造影技術之比較 27 2.3 模擬與實驗架構 30 2.3.1 電腦模擬 30 2.3.2 光聲實驗 33 第三章 模擬與實驗結果 43 3.1 電腦模擬 43 3.2 實驗驗證 48 3.2.1 溫度校準表實驗 49 3.2.2 內插倍數實驗 52 3.2.3 光聲陣列造影實驗 53 第四章 結論與未來工作 60 4.1 結論 60 4.2 未來工作 61 附錄A 雷射能量穩定度模擬 63 附錄B 吸收係數穩定性實驗 65 B.1 吸收係數與溫度變化關係 65 B.2 光熱穩定性對吸收係數之影響 66 附錄C 超音波探頭頻寬對溫度估測影像之模擬 69 參考文獻 71

    A. G. Bell, “Production of sound by radiant energy,” Manufacturer and builder, vol. 13, pp. 156-158(1881).

    H. F. Zhang, K. Maslov, and M. Sivaramakrishnan, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Am. Ind. Phys., July (2007).

    J. T. Oh et al., “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biol. Opt. 11, 034032(2006).

    H. F. Zhang et al., “Imaging acute thermal burns by photoacoustic microscopy,” J. Biol. Opt. 11, 054033(2006).

    M. Pramanik et al., “Design and evaluation of novel breast cancer detection system combining both thermo acoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218-2223(2008).

    X. Wang et al., “Non-invasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biol. Opt. 11, 024015(2006).

    X. Wang, D. L. Chamberland, and D. A. Jamadar, “Non-invasive photoacoustic tomography of human peripheral joints toward diagnosis of inflammatory arthritis,” Opt. Lett. 32, 3002-3004(2007).

    J. Shah et al., “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biol. Opt. 13, 034024(May/June 2008).

    K. Schlott et al., “Optoacoustic temperature determination and acoustic coagulation control in rabbits,” Proc. of SPIE 7885, 78850T(2011)

    X. Huang et al., “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217-228(2008).

    C. M. Cobley et al. “Gold nanostructures: a class of multifunctional materials for biomedical applications,” Chem. Soc. Rec. 40, 44-56(2011).

    G. S. Terentyuk et al., “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biol. Opt. 14(2), 021016(March/April 2009).

    K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B. 109, 20331-20338(2005).

    M. Hu et al., “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084-1094(2006).

    S. H. Wang et al., “Photoacoustic temperature measurements for monitoring of thermal therapy,” Proc. of SPIE 7177, 71771S(2009).

    I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustics monitoring of temperature in tissues,” J. Phys. D: Appl. Phys. 38, 2633-2639(2005).

    B. Quesson, J. A. de Zwart, and C. T. Moonen, “Magnetic resonance temperature imaging for guidance of thermotherapy,” J. Magn. Reson. Imaging 12, 525-533(2000).

    C. W. Wei et al., “In vivo photoacoustic imaging with multiple selective targeting using bioconjugated gold nanorods,” Proc. of SPIE 6856, 68560J(2008).

    W. L. Straube and R. M. Arthur, “Theoretical estimation of the temperature dependence of backscattered ultrasonic power for noninvasive thermometry,” Ultrasound Med. Niol. 20(9), 915-922(1994).

    F. A. Duck, Physical properties of tissue, Academic, New York(1990).

    J. C. Bamber and C. R. Hill, “Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature,” Ultrasound Med. Biol. 5, 149-157(1979)

    M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60, R83-R122(1986).

    I. K. Kikoin, Handbook of Chemistry and Physics, 54th ed., CRC Press, Cleveland, OH(1974).

    L. V. Wang and H. I. Wu, “Biomedical Optics: Principles and Imaging,” Wiley.

    M. Sivaramakrishnan et al., “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349-1361(2007).

    Y. S. Chen et al., “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 18(9), 8867-8878(2010).

    C. Simon, P. VanBaren, E. S. Ebbini, “Two-dimensional temperature estimation using diagnostic ultrasound,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control 45, No. 4(July 1998).

    R. Nasoni and T. Bowen, “Ultrasonic speed as a parameter for noninvasive thermometry,” Non-invasive Temperature measurement 1, 95-107(1989).

    S. W. Huang et al., “Inducing and imaging thermal strain using a single ultrasound linear array,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control 54(9), 1718-1720(2007).

    T. Powalowski, “Ultrasonic system for noninvasive measurement of hemodynamic parameters of human arterial vascular system,” Arch. Acoust. 13(1-2), 89-108(1988)

    I. A. Hein and W. D. O’Brien, “Current time-domain methods for assessing tissue motion by analysis from reflected ultrasound echoes-a review,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control 40(2), 84-101(1993).

    C. H. Seo et al., “Thermal strain imaging: a review,” Interface Focus, doi: 10.1098/rsfs.2011.0010(not yet appeared in the paper journal).

    W. F. Walker and G. E. Trahey, “A fundamental ;limit on delay estimation using partially correlated speckle signals,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control 42(2), 301-308(1995).

    S. M. Huang, H. L. Liu, and M. L. Li, “Improved temperature imaging of focused ultrasound thermal therapy using a sigmoid model based cross-correlation algorithm,” IEEE International Ultrasonics Symposium Proceedings, 2012(unpublished).

    M. L. Li et al., “Ultrasonic Nakagami visualization of HIFU-induced thermal lesions,” IEEE International Ultrasonics Symposium Proceedings, 2251-2253, 2010.

    S. M. Huang, H. L. Liu, and M. L. Li, “A unified approach for ultrasound-monitored focused ultrasound thermal therapy: combination of temperature estimation and Nakagami-based necrosis-formation detection,” IEEE International Ultrasonics Symposium Proceedings, 2011(to appear).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE