研究生: |
羅凱旂 Lo, Kai-Chi |
---|---|
論文名稱: |
耐火高熵合金之高溫氧化行為與機制 Oxidation Behaviors and Mechanisms of Refractory High Entropy Alloy at Elevated Temperature |
指導教授: |
葉安洲
Yeh, An-Chou |
口試委員: |
郭振明
Kuo, Chen-Ming 陳彥儒 Chen, Yen-Ju 曹德綱 Tsao, Te-Kang 蔡哲瑋 Tsai, Che-Wei |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 107 |
中文關鍵詞: | 耐火合金 、高熵合金 、耐火高熵合金 、氧化 、高溫腐蝕 、氮化 |
外文關鍵詞: | Refractory alloy, High entropy alloy, Refractory high entropy alloy, Oxidation, High temperature corrosion, Nitridation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要針對耐火高熵合金(Refractory High Entropy Alloy, RHEA)之高溫氧化行為進行分析與探討,並且共分為四部分:第一部分為含鋁、鉻、矽之複雜型耐火高熵合金於攝氏1200度之氧化行為探討、第二部分為以四方體型(tetragonal)氧化物為保護性氧化層的新型耐火高熵合金之氧化與氮化現象、第三部分為NV1耐火高熵合金於攝氏1200度以上之氧化及氮化現象、第四部份為耐火高熵合金氧化物預測之初探。
在第一部分中,2款新設計的耐火高熵合金在攝氏1200度被恆溫氧化10小時。掃描式電子顯微鏡分析顯示這些合金表面具有鋁矽氧化物層,且氧化層結構明顯受到鋁及釩含量的影響:隨著鋁含量提升及釩含量降低,內氧化區的孔洞尺寸有所下降。
在第二部分中,本研究以熱重分析法及恆溫氧化法對於一款新型耐火高熵合金(NV1)於攝氏1000及1100度進行最多200小時的實驗。實驗結果顯示外氧化層對於氧化增重行為影響顯著,且其由包含氧化鋁及氧化鉻分散顆粒之四方體型氧化物組成。於攝氏1000度,此合金由於缺乏生成緻密四方體型氧化物的能力,導致其氧化增重於200小時的實驗時間內均呈現指數成長的趨勢;於攝氏1100度,氧化增重曲線中出現2個導因於保護性四方體型氧化物層生成的拋物線型氧化增重。此合金於攝氏1100度恆溫氧化200小時後的總氧化增重量為4.03 mg/cm2,顯示其為目前文獻中此溫度最具抗氧化能力的耐火高熵合金。本研究結果亦指出未來進一步設計足以長時間於高溫抵抗氧化的耐火高熵合金之見解。
在第三部分中,本研究著重於NV1耐火高熵合金於攝氏1200、1300及1400度之超高溫恆溫氧化行為,並且實驗時間長達100小時。此實驗條件是目前耐火高熵合金之氧化行為研究中前所未見的。於攝氏1200度,由於包含氧化鋁及氧化鉻分散顆粒之四方體型氧化物層之生成,氧化增重曲線趨向於拋物線型;於攝氏1300度,氧化鉻揮發導致氧化增重爆發性的增加;於攝氏1400度,氧化增重曲線主要呈現單一的冪定律(power-law),並且有莫來石(Mullite)被觀測到出現於氧化層內。此研究揭示耐火高熵合金在超高溫環境下出現的氧化行為以及其發生機制,並為未來設計抗氧化行耐火高熵合金提供新的設計概念。
於第四部份中,作者試圖以鋁、鉻兩種主要生成保護性氧化層的元素之活性(activity)對耐火高熵合金的生成氧化物進行初步的分類與預測。實驗結果顯示鋁、鉻的活性並無法作為耐火高熵合金是否可以生成保護性氧化鋁、氧化鉻層的單一依據,且合金成分對於氧化產物的影響十分顯著。然而鋁、鉻活性、合金成分與氧化產物及行為之間的關係,尚需要進一步的實驗才能夠更加釐清。此部分的研究預期有助於理解耐火高熵合金的氧化行為,以及未來耐火高熵合金的設計。
This study emphasizes the analysis and discussion on the high temperature oxidation behaviors of the RHEA. It is divided into four parts: The first part is the investigation on the oxidation behaviors of (Al, Cr, Si)-bearing complex RHEAs at 1200 °C; the second part is the oxidation and nitridation of a novel RHEA protected by tetragonal oxide at 1000 and 1100 °C; the third part is the oxidation and nitridation of NV1 alloy at 1200 °C and above; the fourth part is the preliminary study on predicting the oxides of the RHEA.
In the first part, the microstructure of two newly developed RHEAs was examined after isothermal oxidation at 1200 °C for 10 hours. Scanning electron microscope (SEM) analysis showed the formation of aluminosilicate layer on the sample surface, and the structure of oxide layers appears to be greatly affected by the content of Al and V. With increased Al content and decreased V content, the size of pores within the internal oxidation zone was decreased.
In the second part, this study examines the oxidation a novel oxidation-resistant RHEA (NV1) by means of thermogravimetric method and isothermal oxidation at 1000 and 1100 °C for up to 200 hours. The external oxide layer strongly influenced the mass gain behaviors, and it consisted of tetragonal oxide with some dispersion of Al2O3 and Cr2O3. At 1000 °C, the inability to form dense tetragonal oxide layer resulted an exponential dependence of mass gain throughout 200 hours. At 1100 °C, mass gain curve showed two parabolic dependences associated with the formation of protective tetragonal oxide layer, the mass gain after 200 hours was 4.03 mg/cm2, which indicates that it is one of the most oxidation resistant RHEAs comparing to literature data to-date. This study can also provide insights on how to further develop RHEA to withstand long term oxidation at elevated temperatures.
In the third part, this study focuses on the isothermal oxidation behaviors of the RHEA used in the second part at 1200, 1300, and 1400 °C for up to 100 hours. Such experimental conditions are unprecedented in the literature regarding to the oxidation behaviors of the RHEAs. At 1200 °C, the oxidation mass gain curve yielded toward parabolic behavior owing to the formation of a tetragonal complex oxide layer with Al2O3 and Cr2O3 dispersions; breakaway oxidation contributed by Cr2O3 evaporation occurred at 1300 °C; a single power-law behavior governed the oxidation mass gain curve at 1400 °C, and mullite was identified within the oxide scale. This study revealed the oxidation behaviors of the RHEA and their mechanisms at extremely high temperature, as well as the guidelines for the future design of oxidation-resistant RHEA.
In the fourth part, the author attempts to preliminarily classify and predict the oxide formation of the RHEAs with the activity of Al and Cr, which are the elements that form the protective oxide layer on the alloy surface. The results indicated the Al and Cr activity could not be taken as sole factor for determining whether a protective Al2O3 and Cr2O3 layer would form for a RHEA. In addition, it appeared that the chemical composition strongly affected the oxidation products for RHEAs. However, the relationships among the Al and Cr activity, chemical composition, and the oxidation products and behaviors for RHEAs requires more studies to be further clarified. This study is expected to improve the understanding on the oxidation behaviors and alloy design of the RHEAs in the future.
[1] N.A. Cumpsty. Jet Propulsion: A Simple Guide to the Aerodynamic and Thermodynamic Design and Performance of Jet Engines, Cambridge University Press, 2003.
[2] W. Betteridge, S.W.K. Shaw. Development of superalloys, Materials Science and Technology 3 (1987) 682-694.
[3] G.W. Meetham. High-temperature materials — a general review, J Mater Sci 26 (1991) 853-860.
[4] I. Anžel. High temperature oxidation of metals and alloys, Metalurgija-Journal of Metallurgy 13 (2007) 325-336.
[5] T. M. Pollock, S. Tin. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties, 2006.
[6] R.W. Broomfield, D.A. Ford, J.K. Bhangu, M.C. Thomas, D.J. Frasier, P.S. Burkholder, K. Harris, G.L. Erickson, J.B. Wahl. Development and Turbine Engine Performance of Three Advanced Rhenium Containing Superalloys for Single Crystal and Directionally Solidified Blades and Vanes, Journal of Engineering for Gas Turbines and Power 120 (1998) 595-608.
[7] A. Sato, Y.L. Chiu, R.C. Reed. Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications, Acta Materialia 59 (2011) 225-240.
[8] M.H. Li, X.F. Sun, J.G. Li, Z.Y. Zhang, T. Jin, H.R. Guan, Z.Q. Hu. Oxidation Behavior of a Single-Crystal Ni-Base Superalloy in Air. I: At 800 and 900°C, Oxidation of Metals 59 (2003) 591-605.
[9] J.H. Chen, P.M. Rogers, J.A. Little. Oxidation behavior of several chromia-forming commercial nickel-base superalloys, Oxidation of Metals 47 (1997) 381-410.
[10] G.R. Wallwork, A.Z. Hed. Some limiting factors in the use of alloys at high temperatures, Oxidation of Metals 3 (1971) 171-184.
[11] Y. Hua, Z. Rong, Y. Ye, K. Chen, R. Chen, Q. Xue, H. Liu. Laser shock processing effects on isothermal oxidation resistance of GH586 superalloy, Applied Surface Science 330 (2015) 439-444.
[12] E. Courtright, J. Prater, C. Henager, E. Greenwell. Oxygen Permeability for Selected Ceramic Oxides in the Range 1200 C-1700 C. BATTELLE PACIFIC NORTHWEST LABS RICHLAND WA, 1991.
[13] B.A. Pint, J.R. DiStefano, I.G. Wright. Oxidation resistance: One barrier to moving beyond Ni-base superalloys, Materials Science and Engineering: A 415 (2006) 255-263.
[14] X.H. Wang, Y.C. Zhou. High-Temperature Oxidation Behavior of Ti2AlC in Air, Oxidation of Metals 59 (2003) 303-320.
[15] K. Kawagishi, A.-C. Yeh, T. Yokokawa, T. Kobayashi, Y. Koizumi, H. Harada. Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238, Superalloys 2012 (2012) 189-195.
[16] Y. Takebe, T. Yokokawa, T. Kobayashi, K. Kawagishi, H. Harada, C. Masuda. Effect of Ir on the Microstructural Stability of the 6th Generation Ni-Base Single Crystal Superalloy, TMS-238, Journal of the Japan Institute of Metals and Materials 79 (2015) 227-231.
[17] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang. Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Advanced Engineering Materials 6 (2004) 299-303.
[18] M.H. Tsai, J.W. Yeh. High-entropy alloys: a critical review, Materials Research Letters 2 (2014) 107-123.
[19] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw. Refractory high-entropy alloys, Intermetallics 18 (2010) 1758-1765.
[20] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19 (2011) 698-706.
[21] O.N. Senkov, S.V. Senkova, C. Woodward. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta Materialia 68 (2014) 214-228.
[22] O.N. Senkov, C. Woodward, D.B. Miracle. Microstructure and Properties of Aluminum-Containing Refractory High-Entropy Alloys, JOM 66 (2014) 2030-2042.
[23] C.-C. Juan, M.-H. Tsai, C.-W. Tsai, C.-M. Lin, W.-R. Wang, C.-C. Yang, S.-K. Chen, S.-J. Lin, J.-W. Yeh. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys, Intermetallics 62 (2015) 76-83.
[24] O.N. Senkov, S.V. Senkova, D.B. Miracle, C. Woodward. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system, Materials Science and Engineering: A 565 (2013) 51-62.
[25] N.O. Senkov, D. Isheim, N.D. Seidman, L.A. Pilchak. Development of a Refractory High Entropy Superalloy, Entropy 18 (2016).
[26] O.N. Senkov, S.V. Senkova, C. Woodward, D.B. Miracle. Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis, Acta Materialia 61 (2013) 1545-1557.
[27] C.M. Lin, C.C. Juan, C.H. Chang, C.W. Tsai, J.W. Yeh. Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys, Journal of Alloys and Compounds 624 (2015) 100-107.
[28] N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy, Materials Letters 142 (2015) 153-155.
[29] O.N. Senkov, C.F. Woodward. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy, Materials Science and Engineering: A 529 (2011) 311-320.
[30] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, Journal of Alloys and Compounds 509 (2011) 6043-6048.
[31] Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, X.D. Hui. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties, Materials Letters 130 (2014) 277-280.
[32] O.N. Senkov, S.V. Senkova, D.M. Dimiduk, C. Woodward, D.B. Miracle. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy, J Mater Sci 47 (2012) 6522-6534.
[33] C.M. Liu, H.M. Wang, S.Q. Zhang, H.B. Tang, A.L. Zhang. Microstructure and oxidation behavior of new refractory high entropy alloys, Journal of Alloys and Compounds 583 (2014) 162-169.
[34] B. Gorr, M. Azim, H.J. Christ, T. Mueller, D. Schliephake, M. Heilmaier. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys, Journal of Alloys and Compounds 624 (2015) 270-278.
[35] B. Gorr, F. Mueller, H.J. Christ, T. Mueller, H. Chen, A. Kauffmann, M. Heilmaier. High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb20Mo20Cr20Ti20Al with and without Si addition, Journal of Alloys and Compounds 688 (2016) 468-477.
[36] T.M. Butler, K.J. Chaput, J.R. Dietrich, O.N. Senkov. High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs), Journal of Alloys and Compounds 729 (2017) 1004-1019.
[37] B. Gorr, F. Müller, M. Azim, H.J. Christ, T. Müller, H. Chen, A. Kauffmann, M. Heilmaier. High-Temperature Oxidation Behavior of Refractory High-Entropy Alloys: Effect of Alloy Composition, Oxidation of Metals 88 (2017) 1-11.
[38] C.H. Chang, M.S. Titus, J.W. Yeh. Oxidation Behavior between 700 and 1300° C of Refractory TiZrNbHfTa High‐Entropy Alloys Containing Aluminum, Advanced Engineering Materials (2018) 1700948.
[39] F. Müller, B. Gorr, H.-J. Christ, H. Chen, A. Kauffmann, M. Heilmaier. Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta-Mo-Cr-Ti-Al, Materials at High Temperatures 35 (2018) 168-176.
[40] S. Sheikh, M.K. Bijaksana, A. Motallebzadeh, S. Shafeie, A. Lozinko, L. Gan, T.-K. Tsao, U. Klement, D. Canadinc, H. Murakami, S. Guo. Accelerated oxidation in ductile refractory high-entropy alloys, Intermetallics 97 (2018) 58-66.
[41] O.A. Waseem, U. Auyeskhan, H.M. Lee, H.J. Ryu. A combinatorial approach for the synthesis and analysis of AlxCryMozNbTiZr high-entropy alloys: Oxidation behavior, Journal of Materials Research (2018) 1-9.
[42] P. Zhang, Y. Li, Z. Chen, J. Zhang, B. Shen. Oxidation response of a vacuum arc melted NbZrTiCrAl refractory high entropy alloy at 800–1200 °C, Vacuum 162 (2019) 20-27.
[43] C.S. Giggins, F.S. Pettit. Oxidation of Ni ‐ Cr ‐ Al Alloys Between 1000° and 1200°C, Journal of The Electrochemical Society 118 (1971) 1782-1790.
[44] D. Caplan, M. Cohen. The volatilization of chromium oxide, Journal of the Electrochemical Society 108 (1961) 438-442.
[45] J. Smialek, G. Meier. Superalloys II, CT Sims, NS Stoloff, and WC Hagel, eds. Wiley, New York, 1987.
[46] F.H. Stott, G.C. Wood, J. Stringer. The influence of alloying elements on the development and maintenance of protective scales, Oxidation of Metals 44 (1995) 113-145.
[47] F. Pettit, G. Meier, M. Gell, C. Kartovich, R. Bricknel, W. Kent, J. Radovich. Oxidation and hot corrosion of superalloys, Superalloys 85 (1984) 651-687.
[48] M.P. Brady, I.G. Wright, B. Gleeson. Alloy design strategies for promoting protective oxide-scale formation, JOM 52 (2000) 16-21.
[49] J.R. DiStefano, L.D. Chitwood. Oxidation and its effects on the mechanical properties of Nb–1Zr, Journal of Nuclear Materials 295 (2001) 42-48.
[50] B.A. Pint, J.R. DiStefano. The Role of Oxygen Uptake and Scale Formation on the Embrittlement of Vanadium Alloys, Oxidation of Metals 63 (2005) 33-55.
[51] J.R. DiStefano, B.A. Pint, J.H. DeVan, H.D. Röhrig, L.D. Chitwood. Effects of oxygen and hydrogen at low pressure on the mechanical properties of V–Cr–Ti alloys, Journal of Nuclear Materials 283-287 (2000) 841-845.
[52] C. Shamblen, T. Redden. Air contamination and embrittlement of titanium alloys, Proceedings: The science, technology and application of titanium (1967) 199-208.
[53] Y. Yokoyama, A. Kobayashi, K. Fukaura, A. Inoue. Oxygen Embrittlement and Effect of the Addition of Ni Element in a Bulk Amorphous Zr-Cu-Al Alloy, Materials Transactions 43 (2002) 571-574.
[54] E.A. Gulbransen, K.F. Andrew, F.A. Brassart. Oxidation of Molybdenum 550° to 1700°C, Journal of The Electrochemical Society 110 (1963) 952-959.
[55] E.A. Gulbransen, K.F. Andrew. Kinetics of the Oxidation of Pure Tungsten from 500° to 1300°C, Journal of The Electrochemical Society 107 (1960) 619-628.
[56] Y. Gu, H. Harada, Y. Ro. Chromium and chromium-based alloys: Problems and possibilities for high-temperature service, JOM 56 (2004) 28-33.
[57] G.R. Wilms, T.W. Rea. Atmospheric contamination of chromium and its effect on mechanical properties, Journal of the Less Common Metals 1 (1959) 152-156.
[58] M.G. Mendiratta, J.J. Lewandowski, D.M. Dimiduk. Strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloys, Metallurgical Transactions A 22 (1991) 1573.
[59] B. Bewlay, M. Jackson, H. Lipsitt. The balance of mechanical and environmental properties of a multielement niobium-niobium silicide-basedIn Situ composite, Metallurgical and Materials Transactions A 27 (1996) 3801-3808.
[60] D.M. Dimiduk, J.H. Perepezko. Mo-Si-B Alloys: Developing a Revolutionary Turbine-Engine Material, MRS Bulletin 28 (2011) 639-645.
[61] B.P. Bewlay, M.R. Jackson, P.R. Subramanian, J.C. Zhao. A review of very-high-temperature Nb-silicide-based composites, Metallurgical and Materials Transactions A 34 (2003) 2043-2052.
[62] V. Supatarawanich, D. Johnson, C. Liu. Effects of microstructure on the oxidation behavior of multiphase Mo–Si–B alloys, Materials Science and Engineering: A 344 (2003) 328-339.
[63] M.K. Meyer, M. Akinc. Isothermal Oxidation Behavior of Mo‐Si‐B Intermetallics at 1450° C, Journal of the American Ceramic Society 79 (1996) 2763-2766.
[64] M.A. Azim, D. Schliephake, C. Hochmuth, B. Gorr, H.-J. Christ, U. Glatzel, M. Heilmaier. Creep Resistance and Oxidation Behavior of Novel Mo-Si-B-Ti Alloys, JOM 67 (2015) 2621-2628.
[65] M.K. Meyer, A.J. Thom, M. Akinc. Oxide scale formation and isothermal oxidation behavior of Mo–Si–B intermetallics at 600–1000°C, Intermetallics 7 (1999) 153-162.
[66] S. Paswan, R. Mitra, S.K. Roy. Isothermal oxidation behaviour of Mo–Si–B and Mo–Si–B–Al alloys in the temperature range of 400–800°C, Materials Science and Engineering: A 424 (2006) 251-265.
[67] K.L. More, P.F. Tortorelli, L.R. Walker, N. Miriyala, J.R. Price, M. van Roode. High-Temperature Stability of SiC-Based Composites in High-Water-Vapor-Pressure Environments, Journal of the American Ceramic Society 86 (2003) 1272-1281.
[68] J. Kimmel, N. Miriyala, J. Price, K. More, P. Tortorelli, H. Eaton, G. Linsey, E. Sun. Evaluation of CFCC liners with EBC after field testing in a gas turbine, Journal of the European Ceramic Society 22 (2002) 2769-2775.
[69] Y.-W. Kim. Intermetallic alloys based on gamma titanium aluminide, JOM 41 (1989) 24-30.
[70] N.A. Nochovnaya, P.V. Panin, A.S. Kochetkov, K.A. Bokov. Modern Refractory Alloys Based on Titanium Gamma-Aluminide: Prospects of Development and Application, Metal Science and Heat Treatment 56 (2014) 364-367.
[71] L. Germann, D. Banerjee, J.Y. Guédou, J.L. Strudel. Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide, Intermetallics 13 (2005) 920-924.
[72] S. Hanada. Niobium aluminides, Current Opinion in Solid State and Materials Science 2 (1997) 279-283.
[73] M. Steinhorst, H.J. Grabke. Oxidation of niobium aluminide NbAl3, Materials Science and Engineering: A 120-121 (1989) 55-59.
[74] Y. Murayama, S. Hanada. High temperature strength, fracture toughness and oxidation resistance of Nb–Si–Al–Ti multiphase alloys, Science and Technology of Advanced Materials 3 (2002) 145-156.
[75] K. Chattopadhyay, R. Mitra, K. Ray. Nonisothermal and isothermal oxidation behavior of Nb-Si-Mo alloys, Metallurgical and Materials Transactions A 39 (2008) 577-592.
[76] O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie. Development and exploration of refractory high entropy alloys—A review, Journal of Materials Research 33 (2018) 3092-3128.
[77] O.A. Waseem, J. Lee, H.M. Lee, H.J. Ryu. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials, Materials Chemistry and Physics 210 (2018) 87-94.
[78] Y. Yang, L. Teng, S. Seetharaman. Kinetic Studies on Evaporation of Liquid Vanadium Oxide, VO x (Where x = 4 or 5), Metallurgical and Materials Transactions B 43 (2012) 1684-1691.
[79] G. Meier, F. Pettit, S. Hu. Oxidation behavior of titanium aluminides, Le Journal de Physique IV 3 (1993) C9-395-C399-402.
[80] H.J.T. Ellingham. Reducibility of oxides and sulfides in metallurgical processes, J Soc Chem Ind 63 (1944) 125-133.
[81] O. Kubaschewski, C. Alcock. International Series on Materials Science and Technology: Metallurgical Thermo-Chemistry. Pergamon Press, Oxford, 1979.
[82] W.P. Davey. Precision Measurements of the Lattice Constants of Twelve Common Metals, Physical Review 25 (1925) 753-761.
[83] F.F. Han, J.X. Chang, H. Li, L.H. Lou, J. Zhang. Influence of Ta content on hot corrosion behaviour of a directionally solidified nickel base superalloy, Journal of Alloys and Compounds 619 (2015) 102-108.
[84] S.J. Park, S.M. Seo, Y.S. Yoo, H.W. Jeong, H. Jang. Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys, Corrosion Science 90 (2015) 305-312.
[85] H.S. Kim, S.J. Park, S.M. Seo, Y.S. Yoo, H.W. Jeong, H. Jang. High temperature oxidation resistance of Ni-(5∼13)Co-(10∼16)Cr-(5∼9)W-5Al-(1∼1.5)Ti-(3∼6)Ta alloys, Metals and Materials International 22 (2016) 789-796.
[86] W. Ren, F. Ouyang, B. Ding, Y. Zhong, J. Yu, Z. Ren, L. Zhou. The influence of CrTaO4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850–900 °C, Journal of Alloys and Compounds 724 (2017) 565-574.
[87] M. Krzyzanowski, J.H. Beynon, D.C.J. Farrugia. Oxide Scale Behavior in High Temperature Metal Processing, John Wiley & Sons, 2010.
[88] D.R. Glasson, S.A.A. Jayaweera. Formation and reactivity of nitrides I. Review and introduction, Journal of Applied Chemistry 18 (1968) 65-77.
[89] A. Soleimani-Dorcheh, M.C. Galetz. Oxidation and Nitridation Behavior of Cr–Si Alloys in Air at 1473 K, Oxidation of Metals 84 (2015) 73-90.
[90] J. Litz, A. Rahmel, M. Schorr. Selective carbide oxidation and internal nitridation of the Ni-base superalloys IN 738 LC and IN 939 in air, Oxidation of Metals 30 (1988) 95-105.
[91] U. Krupp, H.J. Christ. Selective oxidation and internal nitridation during high-temperature exposure of single-crystalline nickel-base superalloys, Metallurgical and Materials Transactions A 31 (2000) 47-56.
[92] L. Huang, X. Sun, H. Guan, Z. Hu. Oxidation behavior of a single-crystal Ni-base superalloy in air at 900, 1000 and 1100° C, Tribology Letters 23 (2006) 15-22.
[93] S.J. Park, S.M. Seo, Y.S. Yoo, H.W. Jeong, H. Jang. Statistical Study of the Effects of the Composition on the Oxidation Resistance of Ni-Based Superalloys, Journal of Nanomaterials 2015 (2015) 11.
[94] J. Cao, J. Zhang, R. Chen, Y. Ye, Y. Hua. High temperature oxidation behavior of Ni-based superalloy GH202, Materials Characterization 118 (2016) 122-128.
[95] D.J. Young, A. Chyrkin, J. He, D. Grüner, W.J. Quadakkers. Slow Transition from Protective to Breakaway Oxidation of Haynes 214 Foil at High Temperature, Oxidation of Metals 79 (2013) 405-427.
[96] N. Otsuka, Y. Nishiyama, T. Kudo. Breakaway Oxidation of TP310S Stainless-Steel Foil Initiated by Cr Depletion of the Entire Specimen in a Simulated Flue-Gas Atmosphere, Oxidation of Metals 62 (2004) 121-139.
[97] D. Nilsson, N. Stavlid, M. Lindquist, S. Hogmark, U. Wiklund. The role of aluminum additions in the oxidation and wear of a TaC:C low-friction coating, Surface and Coatings Technology 203 (2009) 2989-2994.
[98] K.S. Chan. Cyclic oxidation response of multiphase niobium-based alloys, Metallurgical and Materials Transactions A 35 (2004) 589-597.
[99] H. Schneider, J. Schreuer, B. Hildmann. Structure and properties of mullite—a review, Journal of the European Ceramic Society 28 (2008) 329-344.
[100] K.K. Strelov, I.D. Kashcheev. Phase diagram of the system Al2O3-SiO2, Refractories 36 (1995) 244-246.
[101] S. Guo-Malloy, P.F. McMillan, W.T. Petuskey. Glass formation and characterization in the 3Al2O3· 2SiO2-LaPO4 system, Journal of Non-Crystalline Solids 451 (2016) 77-83.
[102] N. Suriyanarayanan, K.K. Nithin, E. Bernardo. Mullite glass ceramics production from coal ash and alumina by high temperature plasma, Journal of Non-Oxide Glasses 1 (2009) 247-260.
[103] A.S. Khanna. Introduction to high temperature oxidation and corrosion, ASM international, 2002.
[104] G.R. Wallwork. The oxidation of alloys, Reports on Progress in Physics 39 (1976) 401-485.
[105] A.S. Suzuki, K. Kawagishi, T. Yokokawa, H. Harada, T. Kobayashi. A New Oxide Morphology Map: Initial Oxidation Behavior of Ni-Base Single-Crystal Superalloys, Metallurgical and Materials Transactions A 43 (2012) 155-162.
[106] R.F. Cabral, M.H. Prado da Silva, J.B. de Campos, E.S. Lima. Study of the Sintering of Mixtures Al2O3-Nb2O5 and Y2O3-Nb2O5, Materials Science Forum 727-728 (2012) 799-803.
[107] C.J. Rawn, R.S. Roth, H.F. McMurdie. Improved Crystallographic Data for AlNbO4, Powder Diffraction 6 (2013) 48-49.