簡易檢索 / 詳目顯示

研究生: 徐乾智
Hsu, Chien-Chi
論文名稱: 建立毒化物大規模洩漏疏散模擬模型
Establish an Evacuation Simulation Model for Large-Scale Leakage of Toxic Chemicals
指導教授: 張國浩
Chang, Kuo-Hao
蘇文瑞
Su, Wen-Ray
口試委員: 林李耀
Lin, Lee-Yao
張子瑩
Chang, Tzu-Yin
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 57
中文關鍵詞: 疏散模擬毒化災隨機細胞傳輸模型
外文關鍵詞: evacuation, simulation, stochastic, model
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技進步帶動工業與經濟快速發展下,各產業所使用、運作之各類化學 物質也日益增加,卻可能因為操作失誤、設備失修、其他不可控或非人為因素造 成毒物化學災害事故頻繁,除了對生命與財產造成威脅,也可能污染環境;特別 是高危害性毒性化學物質發生外洩將可能擴散至鄰近環境而造成重大災害。目前 的災害處理和救援疏散部分仰賴決策者的經驗進行,雖有決策工具可使用,但是 毒化災為較特別的災害類型,若發生大規模的毒化物洩漏災害時,仍希望可以提 供可靠且有效的工具作為輔助。因此,本研究透過建立疏散模擬模型作為決策者 制定策略的參考及輔助,將目標範圍的路網分割成多個細胞,以細胞傳輸模型和 車流模型分別模擬人口以及車輛疏散時的情況,人口和車輛的移動情形則以細胞 之間的流動表示,同時加入人口及車輛的選擇行為代表現實疏散行動的隨機性, 透過本研究提出的模型協助決策者進行適當的災害應變,降低大規模毒化災害所 帶來的損失。
    本研究以高雄市燕巢區作為個案研究的對象,將探討在該地發生大規模毒
    化物洩漏時,風向、集結點設置以及其他相關因素對於整個疏散系統的影響,
    並提出一個新的集結點選擇方法,根據該方法選出之集結點組合與現有設置進
    行比較,前者減少約百分之二十的集結避難時間,並且在車輛疏散階段減少百
    分之十的交通阻塞率。


    With the rapid development of industry and economy driven by scientific and technological progress, chemical substances used and operated in various industries are also increasing day by day, but often due to human negligence, equipment failure or other uncontrollable factors, frequent toxic and chemical disasters occur. Life and property are threatened, and the environment may also be polluted; especially the leakage of highly hazardous and toxic chemical substances may spread to the adjacent environment and cause major disasters. The current disaster rescue and evacuation partly rely on the experience of decision-makers. Although there are decision-making tools available, poisoning disasters are a relatively special type of disaster. If a large- scale poisoning chemical leakage disaster occurs, it is necessary that reliable and effective tools as an aid. Therefore, by establishing an evacuation simulation model as a reference and assistance for decision makers to formulate strategies, this study divides the road network in the target range into multiple cells, and uses the cell transport model and the traffic flow model to simulate the population and vehicle evacuation respectively. The movement of vehicles is represented by the flow between cells. At the same time, the selection behavior of population and vehicles represents the randomness of evacuation actions in reality. Through the model proposed in this study, it assists decision makers in appropriate disaster response and reduces large-scale poisoning disasters the resulting losses.

    摘要................................................................................................................................ I Abstract........................................................................................................................II 圖目錄......................................................................................................................... IV 表目錄........................................................................................................................ VII 第一章 緒論..................................................................................................................1 1.1 研究背景與動機.................................................................................................1 1.2 研究目的.............................................................................................................2 1.3 論文架構.............................................................................................................3 第二章 文獻回顧..........................................................................................................5 2.1 災害管理.............................................................................................................5 2.2 氣體擴散軟體發展與研究用途.........................................................................6 2.3 模擬模型分類.....................................................................................................7 2.4 疏散行為模擬方法.............................................................................................9 第三章 疏散模擬模型................................................................................................11 3.1 人口避難階段....................................................................................................12 3.2 車輛避難階段...................................................................................................18 第四章 個案探討........................................................................................................25 4.1 不同集結點組合之比較和因子對避難時間之影響.......................................26 4.2 不同集結點組合於車輛疏散階段的阻塞情形分析.......................................45 第五章 結論與建議....................................................................................................52 參考文獻...................................................................................................................... 54

    Aakil M. Caunhye, Xiaofeng Nie, Shaligram Pokharel, (2012). Optimization models in emergency logistics : A literature review, Socio-Economic Planning Sciences,Volume 46, Issue 1.
    Alizadeh R, (2011). A dynamic cellular automaton model for evacuation process with obstacles. Safety Science, Volume 49, No. 2, Pages 315–323.
    B Zhang, W K V Chan & S V Ukkusuri, (2014). On the modelling of transportation evacuation: an agent-based discrete-event hybrid-space approach, Journal of Simulation, Volume 8, Issue 4, Pages 259-270.
    Changkun Chen, Huakai Sun, Peng Lei, Dongyue Zhao, Congling Shi, (2021). An extended model for crowd evacuation considering pedestrian panic in artificial attack, Physica A: Statistical Mechanics and its Applications, Volume 571.
    Carlos F. Daganzo, (1994), The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory, Transportation Research Part B: Methodological, Volume 28, Issue 4, Pages 269-287.
    Carlos F. Daganzo, (1995), The cell transmission model, part II: Network traffic, Transportation Research Part B: Methodological, Volume 29, Issue 2, Pages 79-93.
    Carlos F. Daganzo, Nikolas Geroliminis, (2008) An analytical approximation for the macroscopic fundamental diagram of urban traffic, Transportation Research Part B: Methodological, Volume 42, Issue 9, Pages 771-781.
    Caunhye, A., Nie, X., and Pokharel, S., (2012). Optimization models in emergency logistics: A literature review. Socio-Economic Planning Sciences, Volume 46, Issue 1, Pages 4–13.
    Dhingra, S. L., (2011). Foundations of Traffic Flow Theory: The Fundamental Diagram, Traffic Flow Theory Historical Research Perspectives, Transportation Research Circular E-C149.
    Gomes, G., & Horowitz, R., (2006). Optimal freeway ramp metering using the asymmetric cell transmission model.Transportation Research Part C: Emerging Technologies, Volume 14, Issue 4, Pages 244-262.
    Guo, R., (2014). New insights into discretization effects in cellular automata models for pedestrian evacuation. Physica A: Statistical Mechanics and its Applications, Volume 400, Pages 1–11.
    Gwizdałła, T. Some, (2015). Properties of the floor field cellular automata evacuation model. Physica A: Statistical Mechanics and its Applications, Volume 419, Pages 718–728.
    Hassanpour, S., Rassafi, A.A, (2021). Agent-Based Simulation for Pedestrian Evacuation Behaviour Using the Affordance Concept. KSCE Journal of Civil Engineering, Volume 25, Pages 1433–1445.
    Hoogendoorn, S.P., Bovy, P.H.L., (2004). Pedestrian route-choice and activity scheduling theory and models. Transportation Research Part B, Volume 38, Issue 2, Pages 169–190.
    Hyeong Suk Na, Amarnath Banerjee, (2019). Agent-based discrete-event simulation model for no-notice natural disaster evacuation planning, Computers & Industrial Engineering, Volume 129, Pages 44-55.
    Jaekoo Joo, Namhun Kim, Richard A. Wysk, Ling Rothrock, Young-Jun Son, Yeong-
    gwang Oh, Seungho Lee, (2013). Agent-based simulation of affordance-based
    human behaviors in emergency evacuation, Simulation Modelling Practice and Theory, Volume 32, Pages 99-115.
    Jiaxuan Yi, Shuangli Pan, Qun Chen, (2020). Simulation of pedestrian evacuation in
    stampedes based on a cellular automaton model, Simulation Modelling Practice
    and Theory, Volume 104.
    Law, Woon Phui & Erain, Norliyana & Ramli, Noram & Gimbun, Jolius. (2018).
    Assessment of chlorine leak dispersion around Gebeng industrial area and
    potential evacuation route. Atmospheric Research. Volume 216, Pages 117-129. McLoughlin, D. (1985). A Framework for Integrated Emergency Management. Public
    Administration Review, Volume 45, Pages 165–172.
    M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen and D. C. Teneketzis,
    (1996). "Failure diagnosis using discrete-event models," in IEEE Transactions
    on Control Systems Technology, Volume 4, No. 2, Pages 105-124.
    Nikolas Geroliminis, Carlos F. Daganzo, (2008). Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings, Transportation Research
    Part B: Methodological, Volume 42, Issue 9, Pages 759-770.
    Ning Wang, Ying Gao, Chao-ying Li, Wen-mei Gai, (2021). Integrated agent-based simulation and evacuation risk-assessment model for underground building fire:
    A case study, Journal of Building Engineering,Volume 40.
    Ren-Yong Guo, Hai-Jun Huang, S.C. Wong, (2010). Collection, spillback, and dissipation in pedestrian evacuation: A network-based method, Transportation
    Research Part B: Methodological, Volume 45, Issue 3, Pages 490-506.
    Sehyun Tak, Sunghoon Kim & Hwasoo Yeo, (2018). Agent-based pedestrian cell transmission model for evacuation, Transportmetrica A: Transport Science,
    Volume 14, Issue 5-6, Pages 484-502.
    W. K. V. Chan, Y. -J. Son and C. M. Macal, (2010). Agent-based simulation tutorial -
    simulation of emergent behavior and differences between agent-based simulation and discrete-event simulation, Proceedings of the 2010 Winter
    Simulation Conference, Pages 135-150.
    Wei Xie, Eric Wai Ming Lee, Tao Li, Meng Shi, Ruifeng Cao, Yuchun Zhang, (2021).
    A study of group effects in pedestrian crowd evacuation: Experiments,
    modelling and simulation, Safety Science,Volume 133.
    Yanghui Hu, Jun Zhang, Weiguo Song, Nikolai W.F. Bode, (2021). Social groups barely
    change the speed-density relationship in unidirectional pedestrian flow, but affect operational behaviours, Safety Science, Volume 139.

    QR CODE