研究生: |
謝頌恩 Hsieh, Sung-En |
---|---|
論文名稱: |
適用於物聯網之超高能源效率之高解析度類比數位轉換器 High Resolution ADC with Ultra-High Power Efficiency for IoT Application |
指導教授: |
謝志成
Hsieh, Chih-Cheng |
口試委員: |
張順志
Chang, Soon-Jyh 李泰成 Lee, Tai-Cheng 洪浩喬 Hong, Hao-Chiao 許雲翔 Shu, Yun-Shiang 謝秉璇 Hsieh, Ping-Hsuan 陳信樹 Chen, Hsin-Shu 黃柏鈞 Huang, Po-Chiun |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 152 |
中文關鍵詞: | 低電壓 、低功耗 、高解析度 、連續漸進式類比數位轉換器 、積分微分調變器 |
外文關鍵詞: | low voltage, low power, high resolution, SAR ADC, SDM |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在物連網的應用蓬勃發展下,為了達到更智慧化的系統及社會,無所不在的感知層和大量無線感測節點是無可避免的,但是大量的無線感測節點,會造成整體系統功耗過大。因此,本論文提出了三種低功耗的類比數位轉換器,提供環境能量擷取的可能性。
本論文第一個提出的電路為操作在0.3伏十位元的連續漸進式類比數位轉換器。在現今的連續漸進式類比數位轉換器的實現上,往往數位電路的硬體功耗會是最大的負擔,利用提出的電容陣列切法,在數位電路的實作上將都會是單端操作,降低其中節點所需要的充放電次數,以降低數位功耗。此轉換器在台積電90奈米製造,取樣頻率為每秒二十五萬次取樣,有效位元數8.21位元,整體換算的性能表現為0.705 fJ/conversion-step.
本論文的第二個晶片設計為操作低壓0.3伏的連續漸進式類比數位轉換器。在上個晶片的實作中發現,在超低壓的設計下,雜訊的干擾就會顯得惡化,造成無法有效提升有效位元數,所以此架構在比較器上提出了低功耗、低雜訊的做法,也在切換方法有所改良,達到更高的輸入訊號範圍,以降低整體系統雜訊。此晶片使用台積電90奈米製造,取樣頻率為每秒六十萬次取樣,有效位元數為9.46位元,整體換算性能表現為0.44 fJ/conversion-step。
本論文的第三個晶片設計提出混和式的類比數位轉換器,前端為連續漸進式類比數位轉換器,後端為Sigma-delta modulator。根據過往的研究,發現如果想要再進一步提升解析度,電容陣列的準度需要提升,以提升系統線性度,並且必須採用sigma-delta modulator之架構來有效壓抑熱雜訊。第三個晶片設計因此提出提升線性度之電容陣列切換方式,和使用了sigma-delta modulator降低雜訊。此晶片使用台積電90奈米製造,取樣頻率為每秒二十七萬次取樣,有效位元數為11.93位元,整體換算性能表現為0.606 fJ/conversion-step。
With the extensive growing of Internet-of-Things (IoT), in order to achieve the function of smart grids, densely existing sensing nodes and ubiquitous devices become inevitable. While the existence of sensing nodes grows exponentially, dramatically increased power consumption becomes unbearable. To address this problem, this paper proposes three ultra-low power analog to digital converters which provide possibilities for an energy harvesting technique.
The first architecture is a 0.3 V 10-bit successive approximation register analog-to-digital converter. With advanced switching procedures and efficient analog techniques, digital circuit’s power consumption becomes the dominant factor for the overall system’s power efficiency. With the proposed switching procedure, the realization of digital circuits is single-ended, which reduces dynamic power consumption (CV2) of internal nodes. This chip is fabricated under the TSMC 90 nm technology. The sampling rate is 250 kSamples/second. The effective number of bit is 8.21 bits. The Walden’s FoM is 0.705 fJ/conversion-step.
The second architecture is still a 0.3 V successive approximation register analog-to-digital converter. From the experience of the previous implementation, ADC suffers from thermal noise due to the decreasing VLSB from a shrinking supply voltage. Therefore, this work proposes a low noise comparator. With proposed input range boosting switching procedure, the full input range is doubled, which results in suppressed thermal noise. This chip is fabricated under the TSMC 90 nm technology. The sampling rate is 600 kSamples/second. The effective number of bit is 9.46 bits. The Walden’s FoM is 0.44 fJ/conversion-step.
The last implementation is a hybrid analog-to-digital converter, it uses a successive approximation register analog-to-digital converter and Sigma-delta modulator as coarse and fine ADCs, respectively. From the previous study, the matching performance of the capacitor array must be improved. Furthermore, the Sigma-delta modulator must be adopted to suppress thermal noise. This work proposes a switching procedure which increases the linearity. Furthermore, a sigma-delta modulator is implemented. This chip is fabricated under the TSMC 90 nm technology. The sampling rate is 270 kSamples/second. The effective number of bit is 11.93 bits. The Walden’s FoM is 0.606 fJ/conversion-step.
[1] Skyworks. [Online]. Available: http://www.skyworksinc.com/products_IoT.aspx
[2] ResearchGate. [Online]. Available: https://www.researchgate.net/figure/The-three-layer-IoT-architecture_fig3_275352749
[3] W. Fan and Y. Li. Opportunities, Challenges and Practices of the Internet of Things [Online]. Available: http://wwwen.zte.com.cn/endata/magazine/ztetechnologies/2010/no5/articles/201005/t20100510_184418.html
[4] H. Chen, B. Wei, and D. Ma, "Energy Storage and Management System With Carbon Nanotube Supercapacitor and Multidirectional Power Delivery Capability for Autonomous Wireless Sensor Nodes," IEEE Trans. Power Electronics, vol. 25, pp. 2897-2909, Sep 2010.
[5] B. W. Cook, "SoC issues for RF smartdust," Proc. IEEE Symp. VLSI Circuits, vol. 94, no. 6, pp. 1177–1196, Jun 2006.
[6] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation, 3rd ed. WILEY, 2010.
[7] T. C. Carusone, D. A. Johns, and K. W. Martin, Analog Integrated Circuit Design, 2nd ed. WILEY, 2012.
[8] R. H. Walden, "Analog-to-digital converter survey and analysis," IEEE J. Select. Areas Commun, vol. 17, no. 4, pp. 539–550, Apr 1999.
[9] R. Schreier and G. C. Temes, "Understanding Delta-Sigma Data Converters," IEEE Press, 2005.
[10] S.Pavan and R.Schreier, Understanding Delta-Sigma Data Converters, 2nd ed. WILEY, 2017.
[11] J. M. d. l. Rosa, "Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 1, pp. 1-21, Jan 2011.
[12] R. Schreier, Delta-Sigma Data Converters: Theory, Design, and Simulation, 1st ed. WILEY, 1996.
[13] A. V. Oppenheim, Signals and Systems, 2nd ed. Prentice Hall, 2014.
[14] Manolakis, Applied digital signal processing, 3rd ed. CAMBRIDGE, 2012.
[15] J. Markus, J. Silva, and G. C. Temes, "Theory and applications of incremental ΔΣ converters," IEEE Trans. Circuits Syst.I: Reg. Papers, vol. 51, no. 4, pp. 678-690, Apr 2004.
[16] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed. McGraw-Hill, 2002.
[17] C. Z. P. Harpe, X. Wang, G. Dolmans and H. de Groot, "A 12fJ/conversion-step 8bit 10MS/s asynchronous SAR ADC for low energy radios," Proceedings of ESSCIRC, pp. 214-217, Sep 2010.
[18] P. M. Figueiredo and J. C. Vital, "Kickback noise reduction techniques for CMOS latched comparators," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7, pp. 541-545, Jul 2006.
[19] Weste and Hrris, Integrated Circuit Design 4th ed. PEARSON, 2011.
[20] A. Burg, "Near- and sub-threshold design for ultra-low-power embedded systems," Winter School on Design Technologies for Heterogeneous Embedded Systems (FETCH), pp. 7-9, Jan 2013.
[21] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, "A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure," IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr 2010.
[22] A. M. Abo and P. R. Gray, "A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter," IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 599-606, May 1999.
[23] S. I. Chang, K. Al-Ashmouny, and E. Yoon, "A 0.5V 20fJ/conversion-step rail-to-rail SAR ADC with programmable time-delayed control units for low-power biomedical application," Proceedings of the ESSCIRC, pp. 339-342, Sep 2011.
[24] C.-Y. Liou and C.-C. Hsieh, "A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with Charge-Average Switching DAC in 90nm CMOS," ISSCC Dig. Tech. Papers, pp. 280-281, Feb 2013.
[25] P. Harpe, Y. Zhang, G. Dolmans, K. Philips, and H. D. Groot, "A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step," IEEE International Solid-State Circuits Conference (ISSCC), pp. 472-474, Feb 2012.
[26] Y. Zhu et al., "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, Jun 2010.
[27] V. Hariprasath, J. Guerber, S.-H. Lee, and U.-K. Moon, "Merged capacitor switching based SAR ADC with highest switching energy-efficiency," Electron. Lett, vol. 46, no. 9, pp. 620-621, Jun 2010.
[28] Y. Chen, S. Tsukamoto, and T. Kuroda, "A 9b 100MS/s 1.46mW SAR ADC in 65nm CMOS," IEEE ASSCC Dig. Tech. Papers, pp. 145-148, Nov 2009.
[29] C. H. Kuo and C. E. Hsieh, "A high energy-efficiency SAR ADC based on partial floating capacitor switching technique," Proceedings of the ESSCIRC (ESSCIRC), pp. 475-478, Sep 2011.
[30] L. Chen, A. Sanyal, J. Ma, and N. Sun, "A 24-µW 11-bit 1-MS/s SAR ADC with a bidirectional single-side switching technique," European Solid State Circuits Conference (ESSCIRC), pp. 219-222, Sep 2014.
[31] J. Y. Lin, H. Y. Huang, C. C. Hsieh, and H. I. Chen, "A 0.05mm2 0.6V 500kS/s 14.3fJ/conversion-step 11-bit two-step switching SAR ADC for 3-dimensional stacking CMOS imager," IEEE Asian Solid State Circuits Conference (A-SSCC), pp. 165-168, Nov 2012.
[32] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, and C. M. Huang, "A 1V 11fJ/conversion-step 10bit 10MS/s Asynchronous SAR ADC in 0.18μm CMOS," IEEE Symp. VLSI Circuits, pp. 241-242, Jun 2010.
[33] P. Harpe, G. Dolmans, K. Philips, and H. d. Groot, "A 0.7V 7-to-10bit 0-to-2MS/s Flexible SAR ADC for Ultra Low-Power Wireless Sensor Nodes," IEEE European Solid-State Circuits Conf, Sep 2012.
[34] M. v. Elzakker, E. v. Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink, and B. Nauta, "A 10-bit Charge-Redistribution ADC Consuming 1.9mW at 1MS/s," IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1007-1015, May 2010.
[35] A. Shikata, R. Sekimoto, T. Kuroda, and H. Ishikuro, "A 0.5 V 1.1MS/sec 6.3fJ/Conversion-Step SAR-ADC with Tri-Level Comparator in 40 nm CMOS," IEEE J. Solid-State Circuits, vol. 47, no. 4, pp. 1022-1030, Apr 2012.
[36] H. Y. Huang, J. Y. Lin, C. C. Hsieh, W. H. Chang, H. H. Tsai, and C. F. Chiu, "A 9.2b 47fJ/Conversion-step Asynchronous SAR ADC with Input Range Prediction DAC Switching," IEEE ISCAS Dig. Tech. Papers, pp. 2353-2356, May 2012.
[37] W.-L. Wu et al., "A 0.6V 8b 100MS/s SAR ADC with minimized DAC capacitance and switching energy in 65nm CMOS," IEEE ISCAS Dig. Tech. Papers, pp. 2239-2242, May 2013.
[38] H. Y. Tai, Y. S. Hu, H. W. Chen, and H. S. Chen, "A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS," ISSCC Dig. Tech. Papers, pp. 196–197, Feb 2014.
[39] J. Y. Lin and C. C. Hsieh, "A 0.3 V 10-bit 1.17 f SAR ADC With Merge and Split Switching in 90 nm CMOS," IEEE TCAS-I, vol. 62, no. 1, pp. 70-79, Dec 2014.
[40] S. E. Hsieh and C. C. Hsieh, "A 0.3-V 0.705-fJ/Conversion-Step 10-bit SAR ADC With a Shifted Monotonic Switching Procedure in 90-nm CMOS," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 12, pp. 1171-1175, Dec 2016.
[41] M. Yip and A. P. Chandrakasan, "A resolution-reconfigurable 5-to-10b 0.4-to-1V power scalable SAR ADC," ISSCC Dig. Tech. Papers, pp. 190-191, Feb 2011.
[42] P. C. Lee, J. Y. Lin, and C. C. Hsieh, "A 0.4 V 1.94 fJ/conversion-step 10 bit 750 kS/s SAR ADC with Input-Range-Adaptive Switching," IEEE Trans. Circuits Syst I: Reg. Papers, vol. 63, no. 12, pp. 2149-2157, Dec 2016.
[43] C. C. Liu, M. C. Huang, and Y. H. Tu, "A 12 bit 100 MS/s SAR-Assisted Digital-Slope ADC," IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2941-2950, Dec 2016.
[44] J.-Y. Lin and C.-C. Hsieh, "A 0.3 V 10-bit SAR ADC With First 2-bit Guess in 90 nm CMOS," IEEE Trans. Circuits Syst.I: Reg. Papers, vol. 64, no. 3, pp. 562-572, Mar 2017.
[45] Y. J. Chen, K. H. Chang, and C. C. Hsieh, "A 2.02–5.16 fJ/Conversion Step 10 Bit Hybrid Coarse-Fine SAR ADC With Time-Domain Quantizer in 90 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 51, no. 2, pp. 357-364, Feb 2016.
[46] P. Harpe, E. Cantatore, and A. V. Roermund, "A 10b/12b 40 kS/s SAR ADC With Data-Driven Noise Reduction Achieving up to 10.1b ENOB at 2.2 fJ/Conversion-Step," IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3011-3018, Dec 2013.
[47] M. Liu, K. Pelzers, R. v. Dommele, A. v. Roermund, and P. Harpe, "A 106nW 10 b 80 kS/s SAR ADC With Duty-Cycled Reference Generation in 65 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp. 2435-2445, Oct 2016.
[48] M. Sadollahi, K. Hamashita, K. Sobue, and G. C. Temes, "An 11-Bit 250-nW 10-kS/s SAR ADC With Doubled Input Range for Biomedical Applications," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 1, pp. 61-73, Jan 2018.
[49] S. E. Hsieh and C. C. Hsieh, "A 0.44fJ/conversion-step 11b 600KS/s SAR ADC with semi-resting DAC," IEEE Symp. VLSI Circuits, pp. 160-161, Jun 2016.
[50] Y. G. J. Jin and E. Sánchez-Sinencio, "An Energy-Efficient Time-Domain Asynchronous 2 b/Step SAR ADC With a Hybrid R-2R/C-3C DAC Structure," IEEE Journal of Solid-State Circuits, vol. 49, no. 6, pp. 1383-1396, Jun 2014.
[51] W. Y. Pang, C. S. Wang, Y. K. Chang, N. K. Chou, and C. K. Wang, "A 10-bit 500-KS/s low power SAR ADC with splitting comparator for bio-medical applications," IEEE Asian Solid-State Circuits Conference, pp. 149-152, Nov 2009.
[52] T. Miki et al., "A 4.2 mW 50 MS/s 13 bit CMOS SAR ADC With SNR and SFDR Enhancement Techniques," IEEE Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1372-1381, Jun 2015.
[53] M. Ahmadi and W. Namgoong, "Comparator Power Reduction in Low-Frequency SAR ADC Using Optimized Vote Allocation," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 11, pp. 2384-2394, Nov 2015.
[54] L. Chen, X. Tang, A. Sanyal, Y. Yoon, J. Cong, and N. Sun, "A 0.7-V 0.6- µW 100-kS/s Low-Power SAR ADC With Statistical Estimation-Based Noise Reduction," IEEE Journal of Solid-State Circuits, vol. 52, no. 5, pp. 1388-1398, May 2017.
[55] H.-Y. Tai, H.-W. Chen, and H.-S. Chen, "A 3.2fJ/c.-s. 0.35V 10b 100KS/s SAR ADC in 90nm CMOS," IEEE Symp. VLSI Circuits, pp. 92–93, Jun 2012.
[56] R. H. Walden, "Analog-to-digital converter survey and analysis," IEEE J. Select. Areas Commun, vol. 17, no. 4, pp. 539-550, Apr 1999.
[57] B. Murmann. ADC Performance Survey 1997-2017 [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html
[58] W. Liu, P. Huang, and Y. Chiu, "A 12-bit, 45-MS/s, 3-mW redundant successive-approximation register analog-to-digital converter with digital calibration," IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2661-2672, Nov 2011.
[59] J. McNeill, K. Y. Chan, M. C. W. Coln, C. L. David, and C. Brenneman, "All-Digital Background Calibration of a Successive Approximation ADC Using the ‘Split ADC’ Architecture," IEEE Trans. Circuits Syst.I: Reg. Papers, vol. 58, no. 10, pp. 2355-2365, Oct 2011.
[60] Y. Chen et al., "Split capacitor DAC mismatch calibration in successive approximation ADC," IEEE Custom Integrated Circuits Conference, pp. 279-282, Sep 2009.
[61] Y. Liu, E. Bonizzoni, A. D'Amato, and F. Maloberti, "A 105-dB SNDR, 10 kSps multi-level second-order incremental converter with smart-DEM consuming 280 μW and 3.3-V supply," ESSCIRC (ESSCIRC), pp. 371-374, Sep 2013.
[62] M. H. Wu, Y. H. Chung, and H. S. Li, "A 12-bit 8.47-fJ/conversion-step 1-MS/s SAR ADC using capacitor-swapping technique," IEEE Asian Solid State Circuits Conference (A-SSCC), pp. 157-160, Nov 2012.
[63] Y. S. Hu, K. Y. Lin, and H. S. Chen, "A 510nW 12-bit 200kS/s SAR-assisted SAR ADC using a re-switching technique," IEEE Symp. VLSI Circuits, pp. 238-239, Jun 2017.
[64] A. AlMarashli, J. Anders, J. Becker, and M. Ortmanns, "A Nyquist Rate SAR ADC Employing Incremental Sigma Delta DAC Achieving Peak SFDR = 107 dB at 80 kS/s," IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1493-1507, May 2018.
[65] P. Vogelmann, M. Haas, and M. Ortmanns, "A 1.1mW 200kS/s incremental ΔΣ ADC with a DR of 91.5dB using integrator slicing for dynamic power reduction," IEEE International Solid - State Circuits Conference - (ISSCC), pp. 236-238, Feb 2018.
[66] Z. Chen, M. Miyahara, and A. Matsuzawa, "A 2nd order fully-passive noise-shaping SAR ADC with embedded passive gain," IEEE A-SSCC, pp. 309-312, Jun 2016.
[67] S. E. Hsieh and C. C. Hsieh, "A 0.4V 13-bit 270KS/s SAR-ISDM ADC with Opamp-Less Time-Domain Integrator," ISSCC Dig. Tech. Papers, pp. 240-242, Feb 2018.
[68] S.-K. Lee, S.-J. Park, and H.-J. Park, "A 21 fJ/Conversion-Step 100kS/s 10-bit ADC With a Low-Noise Time-Domain Comparator for Low-Power Sensor Interface," IEEE J. Solid-State Circuits, vol. 46, no. 3, pp. 651-659, Mar 2011.
[69] J. Yu, F.-F. Dai, and R.-C. Jaeger, "A 12-Bit Vernier Ring Time-to-Digital Converter in 0.13um CMOS Technology," IEEE Symp. VLSI Circuits, pp. 232-233, Jun 2009.
[70] C. C. Kao, S. E. Hsieh, and C. C. Hsieh, "A 0.5V 12-bit SAR ADC using Adaptive Time-Domain Comparator with Noise Optimization," IEEE A-SSCC, pp. 213-216, Jun 2017.
[71] P. Harpe, E. Cantatore, and A. V. Roermund, "An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1dB SNDR," ISSCC Dig. Tech. Papers, pp. 194-195, Feb 2014.
[72] M. Shim et al., "An oscillator collapse-based comparator with application in a 74.1dB SNDR, 20KS/s 15b SAR ADC," IEEE Symp. VLSI Circuits, pp. 1-2, Jun 2016.
[73] R. Sekimoto, A. Shikata, K. Yoshioka, T. Kuroda, and H. Ishikuro, "A 0.5-V 5.2-fJ/Conversion-Step Full Asynchronous SAR ADC With Leakage Power Reduction Down to 650 pW by Boosted Self-Power Gating in 40-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 48, no. 11, pp. 2628-2636, Nov 2013.
[74] I. Galton, "Why Dynamic-Element-Matching DACs Work," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 2, pp. 69-74, Feb 2010.
[75] K. Nguyen, M. Determan, and S. Kim, "A 2.4mW, 111dB SNR continuous-time ΣΔ ADC with a three-level DEM technique," IEEE Custom Integrated Circuits Conference (CICC), pp. 1-4, 2017.
[76] K.-H. Chang and C.-C. Hsieh, "A 12-bit 150-MS/s Sub-Radix-3 SAR ADC With Switching Miller Capacitance Reduction," IEEE Journal of Solid-State Circuits, vol. 53, no. 6, pp. 1755-1764, June 2018.