簡易檢索 / 詳目顯示

研究生: 莊哲豪
Chuang, Che Hao
論文名稱: 螺旋式移動管線檢測機器人之設計、分析與控制
Analysis and Design of a Spiral Movement Pipe Inspection Robot
指導教授: 葉廷仁
Yeh, Ting Jen
口試委員: 顏炳郎
Yen, Ping Lang
陳榮順
Chen, Rong Shun
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 33
中文關鍵詞: 管線機器人螺旋路徑姿態控制
外文關鍵詞: Pipeline robot, Spiral movement, Attitude control
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一創新的螺旋式移動管線檢測機器人。螺旋式移動管線檢測機器人在結構上類似於差動式輪型機器人加上一個可旋轉的支撐臂搭配主動式方向輪。差動式雙輪的架構使其可維持行進操縱性與靈活度。機器人行進時可以採用兩差動輪著地的三輪著地的穩定模式。在管路中進行檢測時,則是採用以支撐臂張開撐住管壁的螺旋前進模式。研究中推導了在各工作模式之運動學模型,並為其設計控制器。最後實作一管線機器人原型機來驗證此發想之可行性


    This research is on the development of a pipeline inspection robot with spiral moving capability. This pipeline inspection robot is structurally similar to a differential wheeled robot, but has a stretchable supporting arm with an active steering wheel on the top. When traveling in the pipeline, the robot can either move in three-wheel mode in which the robot is supported by the two differential wheels and the steering wheel for better stability. In the inspection mode, by properly stretching the supporting arm, the normal force on the pipe wall can be maintained adequately. Furthermore, by adjusting the speed of the actuation wheels and the direction of the steering wheel, a spiral motion can be resulted. An experimental prototype is constructed. Experiments are conducted to verify the performance of the robot including automatic travel along the pipeline and spiral movement inside the pipeline without turning over.

    摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII 符號一覽表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX 第一章 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究動機與目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 論文簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 第二章 管線機器人系統分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 機器人基本概要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 機器人幾何與運動學分析 . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 機器人動態分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 機器人動態與姿態分析 . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 機器人姿態量測 . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.3 攀爬模式動態. . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.4 攀爬模式姿態量測 . . . . . . . . . . . . . . . . . . . . . . . . . 13 第三章 控制器設計與模擬 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 行進模式系統分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 行進模式控制器設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 攀爬模式模擬結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 攀爬模式控制器設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 攀爬模式模擬結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 第四章 硬體設計與實驗結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1 硬體介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.1 管線機器人原型機 . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.2 主要電子硬體 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.3 控制電路設計與模式轉換策略 . . . . . . . . . . . . . . . . . . . 24 4.2 實驗結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.1行進模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.2 攀爬模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 第五章 結論與未來工作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 未來工作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    [1]Donald Knuth.Pipeline pigging with smart pigs.url:http://smartpigs.net.
    [2]R&R Visual.R&R visual pipelinel inspection services.url:http : / / www .
    seepipe.com/videobased.htm.
    [3]Se-gon Roh and Hyouk Ryeol Choi. “Differential-drive in-pipe robot for moving
    inside urban gas pipelines”. In:IEEE transactions on robotics21.1 (2005),
    pp. 1–17.
    [4]Young-Sik Kwon and Byung-Ju Yi. “Design and motion planning of a two-
    module collaborative indoor pipeline inspection robot”. In:IEEE Transactions
    on Robotics28.3 (2012), pp. 681–696.
    [5]Han-Pang Huang, Jiu-Lou Yan, and Teng-Hu Cheng. “Development and fuzzy
    control of a pipe inspection robot”. In:IEEE Transactions on Industrial Elec-
    tronics57.3 (2010), pp. 1088–1095.
    [6]Jungwan Park et al. “Normal-force control for an in-pipe robot according to
    the inclination of pipelines”. In:IEEE transactions on Industrial Electronics
    58.12 (2011), pp. 5304–5310.
    [7]Koichi Suzumori et al. “Micro inspection robot for 1-in pipes”. In:IEEE/ASME
    transactions on mechatronics4.3 (1999), pp. 286–292.
    [8]Shigeo Hirose et al. “Design of in-pipe inspection vehicles forφ25,φ50,φ150
    pipes”. In:Robotics and Automation, 1999. Proceedings. 1999 IEEE Interna-
    tional Conference on. Vol. 3. IEEE. 1999, pp. 2309–2314.
    [9]Kosuke Nagaya et al. “Wireless piping inspection vehicle using magnetic ad-
    sorption force”. In:IEEE/ASME Transactions on Mechatronics17.3 (2012),
    pp. 472–479.
    [10]Fabien Tâche et al. “Compact magnetic wheeled robot with high mobility for
    inspecting complex shaped pipe structures”. In:2007 IEEE/RSJ International
    Conference on Intel ligent Robots and Systems. IEEE. 2007, pp. 261–266.
    [11]Mihaita Horodinca et al. “A simple architecture for in-pipe inspection robots”.
    In:Proc. Int. Col loq. Mobile, Autonomous Systems. 2002, pp. 61–64.
    32
    [12]Dimitris Chatzigeorgiou, Kamal Youcef-Toumi, and Rached Ben-Mansour.
    “Design of a novel in-pipe reliable leak detector”. In:IEEE/ASME Trans-
    actions on Mechatronics20.2 (2015), pp. 824–833.
    [13]戴邦浩(Bang-Hao Dai). “六軸慣性感測器融合及打滑偵測應用於電動輔助載具, Sensor Fusion of Six-Axis Inertial Sensors and Skid Detection for Power-assist Vehicles”. In:清華大學動力機械工程學系學位論文(2015), pp. 1–66.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE