簡易檢索 / 詳目顯示

研究生: 楊凱鴻
Yang, Kai Hung
論文名稱: 非平衡磁控濺鍍系統鍍著之奈米雙晶銅薄膜其微結構與性質之研究
The Microstructure and Properties of Nanotwinned Cu Thin Films Deposited by Unbalanced Magnetron Sputtering System
指導教授: 歐陽汎怡
Ouyang, Fan-Yi
口試委員: 廖建能
Liao, Chien-Neng
呂福興
Lu, Fu-Hsing
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 93
中文關鍵詞: 奈米雙晶銅非平衡磁控濺鍍
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米雙晶銅薄膜成功地藉由非平衡磁控濺鍍系統製備完成,其高硬度高導電率的特性使其成為未來半導體工業中interconnect的理想候選人,而在半導體製程上,在鍍著interconnect之前會先鍍著一層鈦當作黏著層,在此次實驗中,也將會探討此鈦介層對於奈米雙晶銅的性質之影響。
    從TEM及FIB的觀察中我們發現了三種不同方向的雙晶,一種跟試片的表面夾70度角,另一種跟試片的表面夾54.5度角,最後一種是平行於是片表面;在比較有鈦介層跟無鈦介層的試片之後我們發現,鈦介層會促進銅(111)相的生長進而使70度角跟平行於是片表面的這兩種雙晶比例增高;而藉由改變基材到靶材的距離,可使鍍膜速率有顯著的改變進而使傳遞到成長中的薄膜的每單位面積的能量改變,而此能量的增加可以讓原子有更高的機會移動到平衡的位置,而讓原子堆積與排列得更好,使得薄膜有更高的硬度;而升高起始的鍍膜溫度將會使雙晶的生成數量減少,進而降低硬度。
    另一方面,我們也對奈米雙晶銅隨著薄膜厚度的變化進行了研究,發現到殘餘應力與硬度都會隨著厚度改變而有變化,而其中硬度與殘餘應力呈現一個正相關;另外,生成的雙晶的方向也隨著厚度而有變化,在膜厚小於600nm的時候,並沒有觀察到雙晶的生成,但之後隨著膜厚增加,逐漸有70度角跟54.5度角的雙晶生成,而後又繼續增加厚度才發現有平行的雙晶生成,而這些雙晶的生成可能是藉由壓應力的釋放造成。
    此外,雙晶的生成也會影響腐蝕的速率,因為雙晶與晶界的交會處有機會形成一低能量的區間,而此低能量的區間較不容易腐蝕,因此,能與晶界有比較多交會處的平行的雙晶有比較好的抗腐蝕性。


    Content 中文摘要 Abstract 致謝 Content Chapter 1 Introduction Chapter 2 Literature Review 2.1 Deposition Method 2.2 Twin Boundary 2.2.1 Coincident Site Lattice (CSL) 2.2.2 Deformation Twin and Growth Twin 2.2.3 Stacking Fault Energy 2.3 Characteristics of Nanotwinned Cu 2.3.1 Enhanced Mechanical and Thermal Stabilities 2.3.2 The Origin of the ultra-high strength 2.3.3 The Enhanced Corrosion Resistance Chapter 3 Experimental Details 3.1 Substrate Preparation and Coating Process 3.2 Characterization Methods 3.2.1 X-ray Diffraction (XRD) 3.2.2 Electron Microscopy 3.2.2.1 Focus Ion Beam and Electron Beam System (FIB/SEM) 3.2.2.2 Handmade Milling 3.2.2.3 Transmission Electron Microscopy (TEM) 3.3 Properties Measurements 3.3.1 Hardness 3.3.2 Wettability 3.3.3 Electrical Resistivity 3.3.4 Corrosion Resistance 3.3.5 Residual Stress 3.3.5.1 Laser Curvature Measurement 3.3.5.2 XRD cos2αsin2ψ Method Chapter 4 Results 4.1 Phase and structure 4.1.1 XRD 4.1.2 Thickness and deposition rate 4.1.3 TEM&FIB 4.2 Properties 4.2.1 Electrical Resistivity 4.2.2 Hardness 4.2.3 Contact Angle and Wettability 4.2.4 Residual Stress 4.2.5 Corrosion Resistance Chapter 5 Discussion 5.1 The Orientation of Twin Boundary in Nanotwinned Cu Thin Film 5.1.1 XRD 5.1.2 The Nucleation of Twin Boundary 5.1.3 Thickness and Stress Relief of the Film 5.2 The Properties of the Nanotwinned Cu Thin Film 5.2.1 Hardness 5.2.2 Corrosion resistance Chapter 6 Conclusions Future Work References

    References
    [1] L. Lu, Y. Shen, X. Chen et al., “Ultrahigh strength and high electrical conductivity in copper,” Science, vol. 304, no. 5669, pp. 422-6, Apr 16, 2004.
    [2] L. G. Gosset, A. Farcy, J. de Pontcharra et al., “Advanced Cu interconnects using air gaps,” Microelectronic Engineering, vol. 82, no. 3-4, pp. 321-332, 2005.
    [3] J. Wang, N. Li, O. Anderoglu et al., “Detwinning mechanisms for growth twins in face-centered cubic metals,” Acta Materialia, vol. 58, no. 6, pp. 2262-2270, 2010.
    [4] X. Zhang, O. Anderoglu, A. Misra et al., “Influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel films,” Applied Physics Letters, vol. 90, no. 15, pp. 153101, 2007.
    [5] R. D. A. P.J. Kelly, Vacuum, vol. 56, 2000.
    [6] C. J. Shute, B. D. Myers, S. Xie et al., “Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins,” Acta Materialia, vol. 59, no. 11, pp. 4569-4577, 2011.
    [7] M. L. a. W. Kronberg, F. H., Trans. AIME, vol. 185, pp. 501, 1949.
    [8] L. A. Reza Abbaschian, Robert E. Reed-hill, Physical Metallurgy Principles, 4th ed, SI Edition ed.
    [9] C. P. Haasen, Physical Metallurgy, 3rd ed, 1996.
    [10] Z. H. Jin, P. Gumbsch, K. Albe et al., “Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals,” Acta Materialia, vol. 56, no. 5, pp. 1126-1135, 2008.
    [11] F. J. a. A. Zerilli, R. W., Journal of Applied Physics, vol. 61, pp. 1816, 1987.
    [12] F. J. a. A. Zerilli, R. W., journal of Applied Physics, vol. 68, pp. 915, 1990.
    [13] J. Wang, O. Anderoglu, J. P. Hirth et al., “Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals,” Applied Physics Letters, vol. 95, no. 2, pp.
    021908, 2009.
    [14] G. H. Campbell, C. B. Carter, D. L. Medlin, “Stacking Defects in the 9R phase at an incoherent twin boundary in copper,” Acta Materialia, vol. 46, pp. 5135, 1998.
    [15] D. K. C. Geoffrey H. Campbell, Douglas L. Medlin, James E. Angelo and C. Barry Carter, “Dynamic observation of the FCC to 9R shear transformation in a copper Σ = 3 incoherent twin boundary,” Scripta Materialia, vol. 35, pp. 837, 1996.
    [16] H. a. B. Suzuki, C. S., Acta Materialia, vol. 6, pp. 156, 1958.
    [17] J. A. Venables, ed. R. E. Reed-Hill, J. P. Hirth and H. C. Rogers., Deformation Twinning, pp. 77~166: Gordon & Breach, NewYork, 1964.
    [18] N. a. T. Narita, J. -I., ed. F. R. N. Nabarro. , Dislocations in Solids,, p.^pp. 135~189: Elsevier, Amsterdam, 1992.
    [19] O. Vohringer, Z, Metallk, vol. 65, pp. 352, 1974.
    [20] O. Vohringer, M. A. Meyers, V. A. Lubarda, “The onset of twinning in metals: a constitutive description,” Acta Materialia, vol. 49, pp. 4025, 2001.
    [21] G. Meng, Y. Shao, T. Zhang et al., “Synthesis and corrosion property of pure Ni with a high density of nanoscale twins,” Electrochimica Acta, vol. 53, no. 20, pp. 5923-5926, 2008.
    [22] F. Sun, G. Meng, T. Zhang et al., “Electrochemical corrosion behavior of nickel coating with high density nano-scale twins (NT) in solution with Cl−,” Electrochimica Acta, vol. 54, no. 5, pp. 1578-1583, 2009.
    [23] M. Chen, E. Ma, K. J. Hemker et al., “Deformation twinning in nanocrystalline aluminum,” Science, vol. 300, no. 5623, pp. 1275-7, May 23, 2003.
    [24] G. Meng, L. Wei, Y. Shao et al., “High Pitting Corrosion Resistance of Pure Aluminum with Nanoscale Twins,” Journal of The Electrochemical Society, vol. 156, no. 8, pp. C240, 2009.
    [25] O. A. X. Zhang, R.G. Hoagland, A. Misra, “Nanoscale growth twins in sputtered metal films,” Journal of the Minerals, metals, and Materials Society, vol. 60, 2008.
    [26] F. K. Yan, G. Z. Liu, N. R. Tao et al., “Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles,” Acta Materialia, vol. 60, no. 3, pp. 1059-1071, 2012.
    [27] D. Xu, V. Sriram, V. Ozolins et al., “Nanotwin formation and its physical properties and effect on reliability of copper interconnects,” Microelectronic Engineering, vol. 85, no. 10, pp. 2155-2158, 2008.
    [28] C. Saldana, T. G. Murthy, M. R. Shankar et al., “Stabilizing nanostructured materials by coherent nanotwins and their grain boundary triple junction drag,” Applied Physics Letters, vol. 94, no. 2, pp. 021910, 2009.
    [29] O. Anderoglu, A. Misra, H. Wang et al., “Thermal stability of sputtered Cu films with nanoscale growth twins,” Journal of Applied Physics, vol. 103, no. 9, pp. 094322, 2008.
    [30] D. J. S. M. Upmanyu, L.S. Shvindlerman, G. Gottstein, “Molecular dynamics simulation of triple junction migration,” Acta Materialia, vol. 50, pp. 1405, 2002.
    [31] V. G. Sursaeva, U. Czubayko, G. Gottstein and L. S. Shvindlerman, “Influence of triple junctions on grain,” Acta Materialia, vol. 46, pp. 5863, 1998.
    [32] L. E. Murr, Interfacial Phenomena in Metals and Alloys Reading, pp. 76: Addison-Wesley, Reading, MA, 1975.
    [33] Z. S. You, L. Lu, and K. Lu, “Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins,” Acta Materialia, vol. 59, no. 18, pp. 6927-6937, 2011.
    [34] J. R. W. C.J. Youngdahl, R.C. Hugo and H.H. Kung, “Deformation behavior in nanocrystalline copper,” Scripta Materialia, vol. 44, pp. 1475, 2001.
    [35] H. Sesitoglu, I. Karaman, A. J. Beaudoin, Y. I. Chumlyakov, H. J. Maier and C. N. Tome, “Modeling the deformation behavior of hadfield steel single and polycrystals due to twinning and slip,” Acta Materialia, vol. 48, pp. 2031, 2000.
    [36] X. Zhang, A. Misra, H. Wang et al., “Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films,” Applied Physics Letters, vol. 84, no. 7, pp. 1096, 2004.
    [37] A. Misra, J. P. Hirth, and R. G. Hoagland, “Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites,” Acta Materialia, vol. 53, no. 18, pp. 4817-4824, 2005.
    [38] H. K. M. Shimada , Z.J. Wang, Y.S. Sato, I. Karibe, “Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering,” Acta Materialia, vol. 50, pp. 2331, 2002.
    [39] P. Scherrer, Gött. Nachr, vol. 2, pp. 98, 1918.
    [40] D.B.Williams, Transmission Electron Microscopy A Textbook for Materials Science, 2009.
    [41] G. M. P. W.C. Oliver, “Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of materials research, vol. 7, pp. 1564, 1992.
    [42] T. Young, “An Essay on the Cohesion of Fluids,” Philosophical Transactions of the Royal Society of London, vol. 95, pp. 65-87, 1805.
    [43] D. K. Owens, and R. C. Wendt, “Estimation of the surface free energy of polymers,” Journal of Applied Polymer Science, vol. 13, no. 8, pp. 1741-1747, 1969.
    [44] Y. Ein-Eli, and D. Starosvetsky, “Review on copper chemical–mechanical polishing (CMP) and post-CMP cleaning in ultra large system integrated (ULSI)—An electrochemical perspective,” Electrochimica Acta, vol. 52, no. 5, pp. 1825-1838,2007.
    [45] ASTM, Metal Handbook, 13, p.^pp. 212: ASM International, 1988.
    [46] G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. Lond. A, vol. 82 pp. 172, 1909.
    [47] I. Shabib, and R. E. Miller, “Deformation characteristics and stress–strain response of nanotwinned copper via molecular dynamics simulation,” Acta Materialia, vol. 57, no. 15, pp. 4364-4373, 2009.
    [48] I. I. Database, "Physical properties of Silicon (Si)."
    [49] C. H. Ma, J. H. Huang, and H. Chen, “Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction,” Thin Solid Films, vol. 418, no. 2, pp. 73-78, 2002.
    [50] Mechanics of Materials, pp. 314, 1996.
    [51] W. C. Oliver, and G. M. Pharr, “Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of materials research, vol. 7, no. 6, pp. 1564-1583, 1992.
    [52] A. C. Fischer-Cripps, P. Karvánková, and S. Veprek, “On the measurement of hardness of super-hard coatings,” Surface and Coatings Technology, vol. 200, no. 18-19, pp. 5645-5654, 2006.
    [53] X. Zhang, H. Wang, X. H. Chen et al., “High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins,” Applied Physics Letters, vol. 88, no. 17, pp. 173116, 2006.
    [54] A. M. Hodge, Y. M. Wang, and T. W. Barbee, “Large-scale production of nano-twinned, ultrafine-grained copper,” Materials Science and Engineering: A, vol. 429, no. 1-2, pp. 272-276, 2006.
    [55] C. J. M. Shute, B. D. Xie, S. Barbee, T. W. Hodge, A. M. Weertman, J. R.,“Microstructural stability during cyclic loading of multilayer copper/copper samples with nanoscale twinning,” Scripta Materialia, vol. 60, no. 12, pp. 1073-1077, 2009.
    [56] O. Vohringer, V. A. Lubarda, M. A. Meyers, “The onset of twinning in metals : a constitutive description,” Acta Materialia, vol. 49, pp. 4025, 2001.
    [57] D. Xu, V. Sriram, V. Ozolins et al., “In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper,” Journal of Applied Physics, vol. 105, no. 2, pp. 023521, 2009.
    [58] J.-M. Y. Vinay Sriram, Jia Ye, and Andrew M. Minor, “Determining the Stress Required for Deformation Twinning in Nanocrystalline and Ultrafi ne-grained Copper,” JOM, vol. 60, no. 9, 2008.
    [59] F. Spaepen, “Interfaces and stesses in the films,” Acta Materialia, vol. 48, pp. 31, 2000.
    [60] J. A. S. Anthony J. Perry, Philip J. Martin “Practical measurement of the residual stress in coatings,” vol. 81, pp. 17, 1996.
    [61] V. Valvoda, R. Kuzel Jr., J. Musil and V. Poulek and H. A. Jehn and M. E. Baumgärtner, “Relation of deposition conditions of Ti-N films prepared by d.c. magnetron sputtering to their microstructure and macrostress,” Surface and Coatings Technology, vol. 60, pp. 484, 1993.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE