研究生: |
李政聰 Cheng-Tsung Lee |
---|---|
論文名稱: |
邊界對氣膠粒子緩流及熱泳運動之影響 Creeping and Thermophoretic Motions of Aerosol Particles Subject to Boundary Effects |
指導教授: |
呂世源博士
Dr. Shih-Yuan Lu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 英文 |
論文頁數: | 123 |
中文關鍵詞: | 氣膠 、緩流運動 、熱泳運動 、流體力學 、粒子 、數值模擬 、邊界效應 |
外文關鍵詞: | Aerosol, Creeping motion, Thermophoretic motion, Hydrodynamics, Particle, Mathematical modeling, Boundary Effects |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣膠系統為分散相的固體微粒或液滴懸浮於氣體連續相環境中所構成的系統。當氣膠粒子存在於一溫度分佈不平均之氣相環境中時,氣膠粒子受溫度梯度的驅使會由高溫處往低溫處移動,此種運動現象稱之為熱泳(thermophoresis; thermophoretic motion)。氣膠粒子於氣膠懸浮系統中進行熱泳時,粒子與周圍環境的邊界會產生交互作用,使得粒子的緩流及熱泳運動將有別於僅單一粒子存在時的情形。本論文係採用數值技巧,分別探討單一球形氣膠粒子在任意的均勻溫度分佈場中,受到不同邊界型態影響之緩流及熱泳運動行為。氣膠粒子與不同型態邊界,可以呈任意相對位置懸浮、相對大小可任意變化、可以有任意的物理及表面性質。在低Reynold數及低Peclet數的假設下,動量傳遞及熱傳的對流效應可以忽略,所以主導氣膠系統中流體速度及溫度分佈之主導方程式可以簡化成Stokes方程式、連續方程式、以及Laplace方程式。藉由使用邊界取點法的技巧,氣膠粒子緩流移動、轉動、以及熱泳運動的速度可以被精確地求解出來。結果顯示,在邊界存在的情形下,氣膠粒子的緩流及熱泳運動行為受到邊界效應的影響相當明顯,尤其是當氣膠粒子相當趨近於邊界的情況下。此外,當氣膠粒子與邊界處於不對稱的相對位置時,衍生出的轉動及移動速度將會發生。
Dispersed solid particles or liquid drops suspended in a gaseous continuum are called aerosol particles. The phenomenon that aerosol particles will be driven to move toward lower temperature regions, when placed in a gaseous medium with temperature gradient, is known as thermophoresis (thermophoretic motion). Aerosol particles may interact with surrounding boundaries so that their kinetic behavior will differ from that in the absence of boundaries. In this thesis the numerical results of creeping and thermophoretic motions of a single spherical aerosol particle in the vicinity of different shape of boundaries are presented. The aerosol particle and the boundary, which can be located at arbitrarily relative position, can have arbitrary dimensions, and physical and surface properties. Under the assumption of low Reynolds and Peclet numbers, the convective momentum and heat transfer terms can be neglected so that the governing equations of the velocity and temperature distributions of the fluid can be reduced to Stokes, continuity, and Laplace equations. By the use of boundary collocation technique, the numerical results of the translational, rotational, and thermophoretic velocities can be accurately outputed. The results show that under the presence of boundaries, the creeping and thermophoretic motion of the aerosol particle will be pronounced affected, and boundary effect will be more significant if the aerosol particle is located closer to the boundaries. Moreover, an induced translational or rotational velocity of the aerosol particle will be produced when the aerosol particle is located at asymmetric positions.
Albano, A. M., D. Bedeaux, and P. Mazur, “On the Motion of a Sphere Arbitray Slip in a Viscous Incompressible Fluid,” Physica. A., 80, 89 (1975).
Bakanov, S. P., “Thermophoresis in Gases at Small Kundsen Numbers,” Aerosol Sci. Tech., 15, 77 (1991).
Basset, A. B., A Treaties on Hydrodynamics, Dover, New York, U.S.A., 2, 270 (1961)
Brock, J. R., “On the Theory of Thermal Forces Acting on Aerosol Particles,” J. Colloid Sci, 17, 768 (1962).
Chen, S. H., “Thermophoretic Deposition of a Sphere Normal to a Plane Surface,” Aerosol Sci. Tech., 30, 364 (1999)
Chen, S. H., “Thermophoretic Motion of a Sphere Parallel to an Insulated Plane,” J. Colloid Interf. Sci., 224, 63 (2000)
Felderhof, B. U., “Hydrodynamic Interaction Between Two Spheres,” Physica. A., 88, 373 (1977).
Frieldlander, S. K., Smoke, Dust and Haze, Wiley, New York, 42 (1977).
Happel, J. and H. Brenner, Low Reynolds Number Hydrodynamics, Martinus Nijhoff, The Netherlands, (1983).
Hinds, W. C., Aerosol Technology, John Wiley and Sons, New York, (1982).
Keh, H. J. and J. H. Chang, ”Boundary Effects on the Creeping-Flow and Thermophoretic Motions of an Aerosol Particle in a Spherical Cavity,” Chem. Eng. Sci., 53, 2365 (1998).
Keh, H. J. and S. H. Chen, “Low-Reynolds-Number Hydrodynamic Interactions in a Suspension of Spherical-Particles With Slip Surface,” Chem. Eng. Sci., 52, 1789 (1997).
Keh, H. J. and S. H. Chen, “The Motion of a Slip Spherical-Particle in an Arbitrary Stokes-Flow,” Eur. J. Mech. B-Fluid, 15, 791 (1996).
Keh, H. J. and S. H. Chen, “Thermophoresis of An Arbitrary Three-Dimensional Array of n Interacting Arbitrary Spheres,” J. Aerosol Sci., 27, 1035 (1996).
Kennard, E. H. Kinetic Theory of Gases, McGraw-Hill, New York, (1938).
Kim, S. and S. J. Karrila, Microhydrodynamics : Principles and Selected Applications, Butterworth-Heinemann, Boston, (1991).
Kim, S. and R. T. Mifflin, “The Resistance Mobility Functions of Two Equal Spheres in Low-Reynolds-Number Flow,” Phys. Fluids, 28, 2033 (1985).
Loyalka, S. K., “Slip and Jump Coefficients for Rarefied Gas Flows : Variational Results for Lennard-Jones and n(r)-6 Potentials,” Physica. A., 163, 813 (1990).
Loyalka, S. K. and J. L. Griffin, “Rotation of Non-Spherical Axi-Symmetric Particles in the Slip Regime,” J. Aerosol Sci., 25, 509 (1994).
Ross, S. and I. D. Morrison, Colloidal Systems and Interfaces, John Wiley & Sons, New York, (1988).
Sangtae Kim & Karrila, S. J., Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann, Boston, (1991).
Sasse, A. G. B. M., W. W. Nazaroff, and A. J. Gadgil, “Particle Filter Based on Thermophoretic Deposition From Natural Convection Flow,” Aerosol Sci Tech. 20, 227 (1994).
Simpkins, P. G., S. Greenberg-Kosinski, and J. B. MacChesney, “Thermophoresis : The Mass Transfer Mechanism in Modified Chemical Vapor Deposition,” J. Appl. Phys., 50, 5676 (1979).
Talbot, L., R. K. Cheng, R. W. Schefer, and D. R. Willis, “Thermophoresis of Particles in a Heated Boundary Layer,” J. Fluid Mech., 101, 737 (1980).
Waldmann, L. and K. H. Schmitt, “Thermophoresis and Diffusionphoresis of Aerosols,” in Aerosol Science, ed. C. N. Davies, , Axademic Press, New York, 137 (1966).
Williams, M. M. R. and S. K. Loyalka, Aerosol Science : Theory and Practice, with Special Applicatons to the Nuclear Industry, Pergamon Press, Oxford, U.K., (1991).
Ye, Y., Pui, Y. H. D., Liu, Y. H. B., S. Opiolka, S. Blumhorst, and H. Fissan, “Thermophoretic Effect of Particle Deposition on a Free Standing Semiconductor Wafer in a Clear Room,” J. Aerosol Sci., 22, 63 (1991).