簡易檢索 / 詳目顯示

研究生: 張立昇
Chang, Li-Sheng
論文名稱: 重組脂化免疫原為基礎的治療型子宮頸癌疫苗之抗腫瘤機制探討
Anti-tumor mechanisms of recombinant lipoimmunogen-based therapeutic HPV vaccines
指導教授: 黃海美
Huang, Hai-Mei
劉士任
Liu, Shih-Jen
口試委員: 吳夙欽
劉士任
黃海美
劉柯俊
冷治湘
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 97
中文關鍵詞: 類鐸受體人類乳突瘤病毒免疫治療癌症疫苗
外文關鍵詞: Toll-like recepor, human papillomavirus, MDSC, Treg, CpG ODN
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類乳突病毒(human papillomavirus, HPV)不僅造成每年全球有50萬子宮頸癌新增病例,還導致其它如生殖道及頭頸癌的發生。在HPV所引起的癌症缺乏有效的治療方法的當今,治療型子宮頸癌疫苗的開發是癌症免疫療法的一個理想的選擇。雖然毒殺型T細胞(cytotoxic T lymphocytes, CTLs) 在癌症免疫治療上扮演重要的角色,癌症相關的免疫抑制環境通常會限制這類治療的成功。因此,在免疫治療中同時誘導腫瘤專一性的毒殺型T細胞以及讓免疫抑制狀態倒轉是必要的。我們的研究團隊建立了重組脂質化蛋白質的技術平台,能生產具有活化類鐸受體 2 (toll-like receptor 2, TLR2)的脂質化免疫原(immunogens),利用此平台製備出不活化之人類乳突病毒16型E7脂蛋白(rlipo-E7m),並證實它能活化樹突狀細胞 (Dendritic cell, DC),小鼠注射後可以誘發 Th1 免疫反應來對抗腫瘤。為了提升抗腫瘤效果在小鼠腫瘤大於200mm3的模式下,利用類鐸受體9促進劑(TLR9 agonist)- 含CpG序列非甲基化寡聚去氧核苷酸(unmethylated CpG oligodeoxynucleotide, CpG ODN)與重組脂化免疫原(rlipo-E7m)的混合來對抗大腫瘤。我們發現注射一劑rlipo-E7m/CpG不但能夠在誘導腫瘤專一性毒殺型T細胞(cytotoxic T lymphocytes, CTLs) 方面有加乘效果,且能夠治癒帶有直徑6到8毫米腫瘤的小鼠。而該治療除了能大幅地減少腫瘤內免疫抑制細胞(immunosuppressive cells) (如: CD11b+Gr1+, CD11b+F4/80+ 及 CD4+CD25+FOXP3+)的數目,並且能增加毒殺型T細胞的浸潤。進一步研究發現,帶有直徑大於10毫米腫瘤的小鼠接受rlipo-E7m/CpG以及化療藥物的合併治療後能有效提升存活率。這些結果顯示由脂質化免疫原與含CpG ODN組合而成的免疫療法,其產生之顯著抗腫瘤效果可能反映出毒殺型T細胞的增幅以及免疫抑制細胞被有效抑制的結果。這項以重組脂蛋白為基礎的免疫療法是一套非常具有潛力能被運用在其它癌症疫苗發展的方法。


    High-risk types of human papillomavirus (HPV) cause over 500,000 cervical, anogenital, and a subset of head and neck cancers cases per year. Owning to lack of efficacious treatment regimen currently, therapeutic HPV vaccine is an ideal option to control HPV-mediated maligancies. Although induction of cytotoxic T lymphocytes (CTLs) is important for therapeutic vaccination, the cancer-associated immunosuppressive milieu often impairs the efficacy of such therapies. Therefore, the simultaneous induction of tumor-specific CTLs and reversal of the immunosuppression is necessary for therapeutic vaccination. A recombinant lipidated immunogen (rlipo-E7m) containing an inactivated HPV16E7 (E7m) and a bacterial lipid moiety with toll-like receptor 2 (TLR2) agonist activity has been demonstrated possess robust anti-tumor activity through induction of CTL response. To enhance therapeutic effects, TLR9 agonist (unmethylated CpG oligodeoxynucleotide, CpG ODN) was admixed with rlipo-E7m to treat large tumor in a mouse model of HPV-associated cancer. We found that CpG ODN synergistically enhanced tumor-specific CTL responses in tumor-bearing mice and eradicates large tumors (6-8 mm in diameter) when combined with rlipo-E7m. In addition, the combinations dramatically inhibit local immunosuppressive cells (CD11b+Gr1+, CD11b+F4/80+ and CD4+CD25+FOXP3+) numbers and increase infiltrating CTLs number in tumors. Administration of suboptimal doses of chemotherapeutic agent with rlipo-E7m and CpG ODN increased the survival time of mice-bearing large tumor (>10 mm in diameter). These findings suggest a novel therapeutic role for targeted injections of TLR2 agonist-fused tumor antigen and CpG ODN to direct CTL migration to the tumor bed and repress the immunosuppressive environment in tumor-bearing host. This promising approach could be applied for the development of additional therapeutic cancer vaccines.

    Abstract I 摘要 III Abbreviation V Catalog VIII ⅠIntroduction 1 Ⅰ.1 Requirement of therapeutic HPV vaccines 1 Ⅰ.2 Current therapeutic HPV vaccines development 2 Ⅰ.2.1 Live-vector-based vaccines 3 Ⅰ.2.2 Peptide / Protein-based therapeutic HPV vaccines 3 Ⅰ.2.3 DNA-based vaccines 4 Ⅰ.2.4 Cell-based vaccines 5 Ⅰ.3 TLR agonists as cancer immunotherapeutics 7 Ⅰ.4 Development of recombinant lipoprotein-based HPV vaccine 8 Ⅰ.5 Blockade of immunosuppression enhances efficacy of cancer immunotherapy 12 Ⅰ.6 Combination therapy of chemotherapy and recombinant lipo-immunogen -based immunotherapy 13 Ⅰ.7 Objective of this study 15 Ⅱ Materials and methods 17 Ⅱ.1 Animal 17 Ⅱ.2 Cell lines 17 Ⅱ.3 Reagents 18 Ⅱ.4 Preparation of dendritic cell subsets 19 Ⅱ.5 Flank tumor implantation and treatment schedules 20 Ⅱ.6 ELISPOT assay 21 Ⅱ.7 Cell preparation and staining for flow cytometry 22 Ⅱ.8 Assay of in vivo cytolytic activity 23 Ⅱ.9 In vitro cross-presentation assay 24 Ⅱ.10 Quantitative real-time RT-PCR analysis 25 Ⅱ.11 Depletion of leukocyte subpopulations in vivo 25 Ⅱ.12 Statistical analysis 26 Ⅲ Results 26 Ⅲ.1 Therapeutic effects of rlipo-E7m are limited to early-stage tumors 26 Ⅲ.2 CpG ODN substantially enhances rlipo-E7m-induced pDC activation and therapeutic effects 27 Ⅲ.3 Treatment with rlipo-E7m and CpG ODN enhances antigen-specific T cell immunity 28 Ⅲ.4 Treatment of rlipo-E7m and CpG ODN substantially induces antigen-specific effector memory T cells in tumor-bearing mice 30 Ⅲ.5 Anti-tumor effects of rlipo-E7m and CpG ODN 30 Ⅲ.6 Immunization of rlipo-E7m/CpG elicits long-lasting therapeutic effects 33 Ⅲ.7 Anti-tumor effects of rlipo-E7m and CpG ODN depend on CD8+ T-cells and TLR9 34 Ⅲ.8 CpG ODN enhances antigen presentation in pDC following stimulation of recombinant 35 Ⅲ.9 Combination of rlipo-E7m and CpG ODN suppresses immune regulators in tumor-bearing mice 36 Ⅲ.10 Decrease in numbers of immunosuppressive cells by gemcitabine treatment in tumor-bearing mice 38 Ⅲ.11 Combination therapy of chemotherapy and recombinant lipoimmunogen-based immunotherapy eradicates large tumor 40 Ⅳ Discussions and conclusions 41 Ⅴ References 51 Ⅵ Tables and Figures 64 Ⅶ List of Publications 96

    1. Tay SK: Cervical cancer in the human papillomavirus vaccination era. Current Opinion in Obstetrics and Gynecology 2012, 24:3-7.
    2. de Sanjose S, Serrano B, Castellsague X, Brotons M, Munoz J, Bruni L, Bosch FX: Human papillomavirus (HPV) and related cancers in the Global Alliance for Vaccines and Immunization (GAVI) countries. A WHO/ICO HPV Information Centre Report. Vaccine 2012, 30 Suppl 4:D1-83, vi.
    3. Schiller JT, Castellsague X, Villa LL, Hildesheim A: An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine 2008, 26 Suppl 10:K53-61.
    4. Parkin DM, Bray F: Chapter 2: The burden of HPV-related cancers. Vaccine 2006, 24 Suppl 3:S3/11-25.
    5. Chaturvedi AK: Beyond cervical cancer: burden of other HPV-related cancers among men and women. J Adolesc Health 2010, 46:S20-26.
    6. Mahdavi A, Monk BJ: Vaccines against human papillomavirus and cervical cancer: promises and challenges. Oncologist 2005, 10:528-538.
    7. Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M: Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 2013, 36:1-22.
    8. Hsieh CJ, Kim TW, Hung CF, Juang J, Moniz M, Boyd DA, He L, Chen PJ, Chen CH, Wu TC: Enhancement of vaccinia vaccine potency by linkage of tumor antigen gene to gene encoding calreticulin. Vaccine 2004, 22:3993-4001.
    9. Lamikanra A, Pan ZK, Isaacs SN, Wu TC, Paterson Y: Regression of established human papillomavirus type 16 (HPV-16) immortalized tumors in vivo by vaccinia viruses expressing different forms of HPV-16 E7 correlates with enhanced CD8(+) T-cell responses that home to the tumor site. J Virol 2001, 75:9654-9664.
    10. Kaufmann AM, Stern PL, Rankin EM, Sommer H, Nuessler V, Schneider A, Adams M, Onon TS, Bauknecht T, Wagner U, et al: Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin Cancer Res 2002, 8:3676-3685.
    11. Davidson EJ, Boswell CM, Sehr P, Pawlita M, Tomlinson AE, McVey RJ, Dobson J, Roberts JS, Hickling J, Kitchener HC, Stern PL: Immunological and clinical responses in women with vulval intraepithelial neoplasia vaccinated with a vaccinia virus encoding human papillomavirus 16/18 oncoproteins. Cancer Res 2003, 63:6032-6041.
    12. Baldwin PJ, van der Burg SH, Boswell CM, Offringa R, Hickling JK, Dobson J, Roberts JS, Latimer JA, Moseley RP, Coleman N, et al: Vaccinia-expressed human papillomavirus 16 and 18 e6 and e7 as a therapeutic vaccination for vulval and vaginal intraepithelial neoplasia. Clin Cancer Res 2003, 9:5205-5213.
    13. Gomez-Gutierrez JG, Elpek KG, Montes de Oca-Luna R, Shirwan H, Sam Zhou H, McMasters KM: Vaccination with an adenoviral vector expressing calreticulin-human papillomavirus 16 E7 fusion protein eradicates E7 expressing established tumors in mice. Cancer Immunol Immunother 2007, 56:997-1007.
    14. Jin HS, Park EK, Lee JM, NamKoong SE, Kim DG, Lee YJ, Jun HJ, Han BD, Bae SM, Ahn WS: Immunization with adenoviral vectors carrying recombinant IL-12 and E7 enhanced the antitumor immunity to human papillomavirus 16-associated tumor. Gynecol Oncol 2005, 97:559-567.
    15. Liu DW, Tsao YP, Kung JT, Ding YA, Sytwu HK, Xiao X, Chen SL: Recombinant adeno-associated virus expressing human papillomavirus type 16 E7 peptide DNA fused with heat shock protein DNA as a potential vaccine for cervical cancer. J Virol 2000, 74:2888-2894.
    16. Pozzi E, Basavecchia V, Zanotto C, Pacchioni S, Morghen Cde G, Radaelli A: Construction and characterization of recombinant fowlpox viruses expressing human papilloma virus E6 and E7 oncoproteins. J Virol Methods 2009, 158:184-189.
    17. Liao JB, Publicover J, Rose JK, DiMaio D: Single-dose, therapeutic vaccination of mice with vesicular stomatitis virus expressing human papillomavirus type 16 E7 protein. Clin Vaccine Immunol 2008, 15:817-824.
    18. Daemen T, Riezebos-Brilman A, Regts J, Dontje B, van der Zee A, Wilschut J: Superior therapeutic efficacy of alphavirus-mediated immunization against human papilloma virus type 16 antigens in a murine tumour model: effects of the route of immunization. Antivir Ther 2004, 9:733-742.
    19. Riezebos-Brilman A, Regts J, Chen M, Wilschut J, Daemen T: Augmentation of alphavirus vector-induced human papilloma virus-specific immune and anti-tumour responses by co-expression of interleukin-12. Vaccine 2009, 27:701-707.
    20. Riezebos-Brilman A, Walczak M, Regts J, Rots MG, Kamps G, Dontje B, Haisma HY, Wilschut J, Daemen T: A comparative study on the immunotherapeutic efficacy of recombinant Semliki Forest virus and adenovirus vector systems in a murine model for cervical cancer. Gene Ther 2007, 14:1695-1704.
    21. Stewart TJ, Drane D, Malliaros J, Elmer H, Malcolm KM, Cox JC, Edwards SJ, Frazer IH, Fernando GJ: ISCOMATRIX adjuvant: an adjuvant suitable for use in anticancer vaccines. Vaccine 2004, 22:3738-3743.
    22. Cui Z, Huang L: Liposome-polycation-DNA (LPD) particle as a carrier and adjuvant for protein-based vaccines: therapeutic effect against cervical cancer. Cancer Immunol Immunother 2005, 54:1180-1190.
    23. Liao CW, Chen CA, Lee CN, Su YN, Chang MC, Syu MH, Hsieh CY, Cheng WF: Fusion protein vaccine by domains of bacterial exotoxin linked with a tumor antigen generates potent immunologic responses and antitumor effects. Cancer Res 2005, 65:9089-9098.
    24. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, Drijfhout JW, Wafelman AR, Oostendorp J, Fleuren GJ, et al: Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res 2008, 14:169-177.
    25. Welters MJ, Kenter GG, Piersma SJ, Vloon AP, Lowik MJ, Berends-van der Meer DM, Drijfhout JW, Valentijn AR, Wafelman AR, Oostendorp J, et al: Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res 2008, 14:178-187.
    26. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, Essahsah F, Fathers LM, Offringa R, Drijfhout JW, et al: Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 2009, 361:1838-1847.
    27. van Poelgeest MI, Welters MJ, van Esch EM, Stynenbosch LF, Kerpershoek G, van Persijn van Meerten EL, van den Hende M, Lowik MJ, Berends-van der Meer DM, Fathers LM, et al: HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. J Transl Med 2013, 11:88.
    28. de Vos van Steenwijk PJ, van Poelgeest MI, Ramwadhdoebe TH, Lowik MJ, Berends-van der Meer DM, van der Minne CE, Loof NM, Stynenbosch LF, Fathers LM, Valentijn AR, et al: The long-term immune response after HPV16 peptide vaccination in women with low-grade pre-malignant disorders of the uterine cervix: a placebo-controlled phase II study. Cancer Immunol Immunother 2014, 63:147-160.
    29. Steller MA, Gurski KJ, Murakami M, Daniel RW, Shah KV, Celis E, Sette A, Trimble EL, Park RC, Marincola FM: Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin Cancer Res 1998, 4:2103-2109.
    30. Muderspach L, Wilczynski S, Roman L, Bade L, Felix J, Small LA, Kast WM, Fascio G, Marty V, Weber J: A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin Cancer Res 2000, 6:3406-3416.
    31. van Driel WJ, Ressing ME, Kenter GG, Brandt RM, Krul EJ, van Rossum AB, Schuuring E, Offringa R, Bauknecht T, Tamm-Hermelink A, et al: Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: clinical evaluation of a phase I-II trial. Eur J Cancer 1999, 35:946-952.
    32. Ressing ME, van Driel WJ, Brandt RM, Kenter GG, de Jong JH, Bauknecht T, Fleuren GJ, Hoogerhout P, Offringa R, Sette A, et al: Detection of T helper responses, but not of human papillomavirus-specific cytotoxic T lymphocyte responses, after peptide vaccination of patients with cervical carcinoma. J Immunother 2000, 23:255-266.
    33. Gurunathan S, Klinman DM, Seder RA: DNA vaccines: immunology, application, and optimization*. Annu Rev Immunol 2000, 18:927-974.
    34. Klinman DM, Takeshita F, Kamstrup S, Takeshita S, Ishii K, Ichino M, Yamada H: DNA vaccines: capacity to induce auto-immunity and tolerance. Dev Biol (Basel) 2000, 104:45-51.
    35. Trimble C, Lin CT, Hung CF, Pai S, Juang J, He L, Gillison M, Pardoll D, Wu L, Wu TC: Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine 2003, 21:4036-4042.
    36. Chen CA, Chang MC, Sun WZ, Chen YL, Chiang YC, Hsieh CY, Chen SM, Hsiao PN, Cheng WF: Noncarrier naked antigen-specific DNA vaccine generates potent antigen-specific immunologic responses and antitumor effects. Gene Ther 2009, 16:776-787.
    37. Hung CF, Hsu KF, Cheng WF, Chai CY, He L, Ling M, Wu TC: Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Fms-like tyrosine kinase 3-ligand. Cancer Res 2001, 61:1080-1088.
    38. Hauser H, Shen L, Gu QL, Krueger S, Chen SY: Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines. Gene Ther 2004, 11:924-932.
    39. Hung CF, Cheng WF, Chai CY, Hsu KF, He L, Ling M, Wu TC: Improving vaccine potency through intercellular spreading and enhanced MHC class I presentation of antigen. J Immunol 2001, 166:5733-5740.
    40. Chen CH, Wang TL, Hung CF, Yang Y, Young RA, Pardoll DM, Wu TC: Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res 2000, 60:1035-1042.
    41. Huang CY, Chen CA, Lee CN, Chang MC, Su YN, Lin YC, Hsieh CY, Cheng WF: DNA vaccine encoding heat shock protein 60 co-linked to HPV16 E6 and E7 tumor antigens generates more potent immunotherapeutic effects than respective E6 or E7 tumor antigens. Gynecol Oncol 2007, 107:404-412.
    42. Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M, Wu TC: Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest 2001, 108:669-678.
    43. Kim JW, Hung CF, Juang J, He L, Kim TW, Armstrong DK, Pai SI, Chen PJ, Lin CT, Boyd DA, Wu TC: Comparison of HPV DNA vaccines employing intracellular targeting strategies. Gene Ther 2004, 11:1011-1018.
    44. Hung CF, Cheng WF, Hsu KF, Chai CY, He L, Ling M, Wu TC: Cancer immunotherapy using a DNA vaccine encoding the translocation domain of a bacterial toxin linked to a tumor antigen. Cancer Res 2001, 61:3698-3703.
    45. Huang CH, Peng S, He L, Tsai YC, Boyd DA, Hansen TH, Wu TC, Hung CF: Cancer immunotherapy using a DNA vaccine encoding a single-chain trimer of MHC class I linked to an HPV-16 E6 immunodominant CTL epitope. Gene Ther 2005, 12:1180-1186.
    46. Kim TW, Hung CF, Boyd D, Juang J, He L, Kim JW, Hardwick JM, Wu TC: Enhancing DNA vaccine potency by combining a strategy to prolong dendritic cell life with intracellular targeting strategies. J Immunol 2003, 171:2970-2976.
    47. Kim TW, Hung CF, Ling M, Juang J, He L, Hardwick JM, Kumar S, Wu TC: Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. J Clin Invest 2003, 112:109-117.
    48. Ohlschlager P, Quetting M, Alvarez G, Durst M, Gissmann L, Kaufmann AM: Enhancement of immunogenicity of a therapeutic cervical cancer DNA-based vaccine by co-application of sequence-optimized genetic adjuvants. Int J Cancer 2009, 125:189-198.
    49. Hsieh CY, Chen CA, Huang CY, Chang MC, Lee CN, Su YN, Cheng WF: IL-6-encoding tumor antigen generates potent cancer immunotherapy through antigen processing and anti-apoptotic pathways. Mol Ther 2007, 15:1890-1897.
    50. Babiuk S, Baca-Estrada ME, Foldvari M, Middleton DM, Rabussay D, Widera G, Babiuk LA: Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines. J Biotechnol 2004, 110:1-10.
    51. Sardesai NY, Weiner DB: Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 2011, 23:421-429.
    52. Best SR, Peng S, Juang CM, Hung CF, Hannaman D, Saunders JR, Wu TC, Pai SI: Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery. Vaccine 2009, 27:5450-5459.
    53. Yan J, Harris K, Khan AS, Draghia-Akli R, Sewell D, Weiner DB: Cellular immunity induced by a novel HPV18 DNA vaccine encoding an E6/E7 fusion consensus protein in mice and rhesus macaques. Vaccine 2008, 26:5210-5215.
    54. Ferrara A, Nonn M, Sehr P, Schreckenberger C, Pawlita M, Durst M, Schneider A, Kaufmann AM: Dendritic cell-based tumor vaccine for cervical cancer II: results of a clinical pilot study in 15 individual patients. J Cancer Res Clin Oncol 2003, 129:521-530.
    55. Santin AD, Bellone S, Palmieri M, Ravaggi A, Romani C, Tassi R, Roman JJ, Burnett A, Pecorelli S, Cannon MJ: HPV16/18 E7-pulsed dendritic cell vaccination in cervical cancer patients with recurrent disease refractory to standard treatment modalities. Gynecol Oncol 2006, 100:469-478.
    56. Santin AD, Bellone S, Palmieri M, Zanolini A, Ravaggi A, Siegel ER, Roman JJ, Pecorelli S, Cannon MJ: Human papillomavirus type 16 and 18 E7-pulsed dendritic cell vaccination of stage IB or IIA cervical cancer patients: a phase I escalating-dose trial. J Virol 2008, 82:1968-1979.
    57. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, et al: Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010, 363:411-422.
    58. Copier J, Dalgleish A: Whole-cell vaccines: A failure or a success waiting to happen? Curr Opin Mol Ther 2010, 12:14-20.
    59. Bodey B, Bodey B, Jr., Siegel SE, Kaiser HE: Failure of cancer vaccines: the significant limitations of this approach to immunotherapy. Anticancer Res 2000, 20:2665-2676.
    60. Cohen EP, Chopra A, I OS, Kim TS: Enhancing cellular cancer vaccines. Immunotherapy 2009, 1:495-504.
    61. Mikyskova R, Indrova M, Simova J, Jandlova T, Bieblova J, Jinoch P, Bubenik J, Vonka V: Treatment of minimal residual disease after surgery or chemotherapy in mice carrying HPV16-associated tumours: Cytokine and gene therapy with IL-2 and GM-CSF. Int J Oncol 2004, 24:161-167.
    62. Mikyskova R, Indrova M, Simova J, Bieblova J, Bubenik J, Reinis M: Genetically modified tumour vaccines producing IL-12 augment chemotherapy of HPV16-associated tumours with gemcitabine. Oncol Rep 2011, 25:1683-1689.
    63. Chang EY, Chen CH, Ji H, Wang TL, Hung K, Lee BP, Huang AY, Kurman RJ, Pardoll DM, Wu T: Antigen-specific cancer immunotherapy using a GM-CSF secreting allogeneic tumor cell-based vaccine. Int J Cancer 2000, 86:725-730.
    64. Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998, 392:245-252.
    65. Joffre OP, Segura E, Savina A, Amigorena S: Cross-presentation by dendritic cells. Nat Rev Immunol 2012, 12:557-569.
    66. Randow F, MacMicking JD, James LC: Cellular self-defense: how cell-autonomous immunity protects against pathogens. Science 2013, 340:701-706.
    67. Roy CR, Mocarski ES: Pathogen subversion of cell-intrinsic innate immunity. Nat Immunol 2007, 8:1179-1187.
    68. Fransen F, Boog CJ, van Putten JP, van der Ley P: Agonists of Toll-like receptors 3, 4, 7, and 9 are candidates for use as adjuvants in an outer membrane vaccine against Neisseria meningitidis serogroup B. Infect Immun 2007, 75:5939-5946.
    69. Zaks K, Jordan M, Guth A, Sellins K, Kedl R, Izzo A, Bosio C, Dow S: Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J Immunol 2006, 176:7335-7345.
    70. Warger T, Osterloh P, Rechtsteiner G, Fassbender M, Heib V, Schmid B, Schmitt E, Schild H, Radsak MP: Synergistic activation of dendritic cells by combined Toll-like receptor ligation induces superior CTL responses in vivo. Blood 2006, 108:544-550.
    71. Zhu Q, Egelston C, Vivekanandhan A, Uematsu S, Akira S, Klinman DM, Belyakov IM, Berzofsky JA: Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: implications for vaccines. Proceedings of the National Academy of Sciences of the United States of America 2008, 105:16260-16265.
    72. Whitmore MM, DeVeer MJ, Edling A, Oates RK, Simons B, Lindner D, Williams BR: Synergistic activation of innate immunity by double-stranded RNA and CpG DNA promotes enhanced antitumor activity. Cancer Res 2004, 64:5850-5860.
    73. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, et al: Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 1999, 285:732-736.
    74. Thoma-Uszynski S, Stenger S, Takeuchi O, Ochoa MT, Engele M, Sieling PA, Barnes PF, Rollinghoff M, Bolcskei PL, Wagner M, et al: Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 2001, 291:1544-1547.
    75. Weis JJ, Ma Y, Erdile LF: Biological activities of native and recombinant Borrelia burgdorferi outer surface protein A: dependence on lipid modification. Infect Immun 1994, 62:4632-4636.
    76. Knigge H, Simon MM, Meuer SC, Kramer MD, Wallich R: The outer surface lipoprotein OspA of Borrelia burgdorferi provides co-stimulatory signals to normal human peripheral CD4+ and CD8+ T lymphocytes. Eur J Immunol 1996, 26:2299-2303.
    77. Steere AC, Sikand VK, Meurice F, Parenti DL, Fikrig E, Schoen RT, Nowakowski J, Schmid CH, Laukamp S, Buscarino C, Krause DS: Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N Engl J Med 1998, 339:209-215.
    78. Cote-Sierra J, Jongert E, Bredan A, Gautam DC, Parkhouse M, Cornelis P, De Baetselier P, Revets H: A new membrane-bound OprI lipoprotein expression vector. High production of heterologous fusion proteins in gram (-) bacteria and the implications for oral vaccination. Gene 1998, 221:25-34.
    79. Rau H, Revets H, Cornelis P, Titzmann A, Ruggli N, McCullough KC, Summerfield A: Efficacy and functionality of lipoprotein OprI from Pseudomonas aeruginosa as adjuvant for a subunit vaccine against classical swine fever. Vaccine 2006, 24:4757-4768.
    80. Chen HW, Liu SJ, Liu HH, Kwok Y, Lin CL, Lin LH, Chen MY, Tsai JP, Chang LS, Chiu FF, et al: A novel technology for the production of a heterologous lipoprotein immunogen in high yield has implications for the field of vaccine design. Vaccine 2009, 27:1400-1409.
    81. Kwok Y, Sung WC, Lin AL, Liu HH, Chou FA, Hsieh SS, Leng CH, Chong P: Rapid isolation and characterization of bacterial lipopeptides using liquid chromatography and mass spectrometry analysis. Proteomics 2011, 11:2620-2627.
    82. Leng CH, Chen HW, Chang LS, Liu HH, Liu HY, Sher YP, Chang YW, Lien SP, Huang TY, Chen MY, et al: A recombinant lipoprotein containing an unsaturated fatty acid activates NF-kappaB through the TLR2 signaling pathway and induces a differential gene profile from a synthetic lipopeptide. Mol Immunol 2010, 47:2015-2021.
    83. Huang CY, Chen JJ, Shen KY, Chang LS, Yeh YC, Chen IH, Chong P, Liu SJ, Leng CH: Recombinant lipidated HPV E7 induces a Th-1-biased immune response and protective immunity against cervical cancer in a mouse model. PLoS One 2012, 7:e40970.
    84. Chang LS, Leng CH, Yeh YC, Wu CC, Chen HW, Huang HM, Liu SJ: Toll-like receptor 9 agonist enhances anti-tumor immunity and inhibits tumor-associated immunosuppressive cells numbers in a mouse cervical cancer model following recombinant lipoprotein therapy. Mol Cancer 2014, 13:60.
    85. Rabinovich GA, Gabrilovich D, Sotomayor EM: Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 2007, 25:267-296.
    86. Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T: Regulatory T cells: how do they suppress immune responses? Int Immunol 2009, 21:1105-1111.
    87. Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, Pisarev V, Sherman S, Sporn MB, Gabrilovich D: Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 2011, 121:4015-4029.
    88. Pittet MJ: Behavior of immune players in the tumor microenvironment. Curr Opin Oncol 2009, 21:53-59.
    89. James E, Yeh A, King C, Korangy F, Bailey I, Boulanger DS, Van den Eynde BJ, Murray N, Elliott TJ: Differential suppression of tumor-specific CD8+ T cells by regulatory T cells. J Immunol 2010, 185:5048-5055.
    90. Ruffell B, Affara NI, Coussens LM: Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012, 33:119-126.
    91. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V: Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012, 12:253-268.
    92. Young MR, Wright MA, Pandit R: Myeloid differentiation treatment to diminish the presence of immune-suppressive CD34+ cells within human head and neck squamous cell carcinomas. Journal of Immunology 1997, 159:990-996.
    93. Kusmartsev SA, Kusmartseva IN, Afanasyev SG, Cherdyntseva NV: Immunosuppressive cells in bone marrow of patients with stomach cancer. Adv Exp Med Biol 1998, 451:189-194.
    94. Subiza JL, Vinuela JE, Rodriguez R, Gil J, Figueredo MA, De La Concha EG: Development of splenic natural suppressor (NS) cells in Ehrlich tumor-bearing mice. International Journal of Cancer 1989, 44:307-314.
    95. Kusmartsev SA, Ogreba VI: [Suppressor activity of bone marrow and spleen cells in C57Bl/6 mice during carcinogenesis induced by 7,12-dimethylbenz(a)anthracene]. Eksp Onkol 1989, 11:23-26.
    96. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B: Increase of regulatory T cells in the peripheral blood of cancer patients. Clinical Cancer Research 2003, 9:606-612.
    97. Schaefer C, Kim GG, Albers A, Hoermann K, Myers EN, Whiteside TL: Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. British Journal of Cancer 2005, 92:913-920.
    98. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS, Linehan DC: Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. Journal of Immunology 2002, 169:2756-2761.
    99. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, et al: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Medicine 2004, 10:942-949.
    100. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, Vieweg J: Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. Journal of Clinical Investigation 2005, 115:3623-3633.
    101. Litzinger MT, Fernando R, Curiel TJ, Grosenbach DW, Schlom J, Palena C: IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 2007, 110:3192-3201.
    102. Rosenberg SA, Yang JC, Restifo NP: Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004, 10:909-915.
    103. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, et al: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007, 13:1050-1059.
    104. Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, Aymeric L, Michaud M, Apetoh L, Barault L, et al: Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 2010, 29:482-491.
    105. Kaneno R, Shurin GV, Tourkova IL, Shurin MR: Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations. J Transl Med 2009, 7:58.
    106. Shurin GV, Tourkova IL, Kaneno R, Shurin MR: Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism. J Immunol 2009, 183:137-144.
    107. Kang TH, Mao CP, Lee SY, Chen A, Lee JH, Kim TW, Alvarez RD, Roden RB, Pardoll D, Hung CF, Wu TC: Chemotherapy acts as an adjuvant to convert the tumor microenvironment into a highly permissive state for vaccination-induced antitumor immunity. Cancer Res 2013, 73:2493-2504.
    108. Hirooka Y, Itoh A, Kawashima H, Hara K, Nonogaki K, Kasugai T, Ohno E, Ishikawa T, Matsubara H, Ishigami M, et al: A combination therapy of gemcitabine with immunotherapy for patients with inoperable locally advanced pancreatic cancer. Pancreas 2009, 38:e69-74.
    109. Poplin E, Feng Y, Berlin J, Rothenberg ML, Hochster H, Mitchell E, Alberts S, O'Dwyer P, Haller D, Catalano P, et al: Phase III, randomized study of gemcitabine and oxaliplatin versus gemcitabine (fixed-dose rate infusion) compared with gemcitabine (30-minute infusion) in patients with pancreatic carcinoma E6201: a trial of the Eastern Cooperative Oncology Group. J Clin Oncol 2009, 27:3778-3785.
    110. Kimura Y, Tsukada J, Tomoda T, Takahashi H, Imai K, Shimamura K, Sunamura M, Yonemitsu Y, Shimodaira S, Koido S, et al: Clinical and immunologic evaluation of dendritic cell-based immunotherapy in combination with gemcitabine and/or S-1 in patients with advanced pancreatic carcinoma. Pancreas 2012, 41:195-205.
    111. Shevchenko I, Karakhanova S, Soltek S, Link J, Bayry J, Werner J, Umansky V, Bazhin AV: Low-dose gemcitabine depletes regulatory T cells and improves survival in the orthotopic Panc02 model of pancreatic cancer. Int J Cancer 2013, 133:98-107.
    112. Zatloukal P, Petruzelka L: Gemcitabine/carboplatin in advanced non-small cell lung cancer. Lung Cancer 2002, 38 Suppl 2:S33-36.
    113. Correale P, Cusi MG, Tsang KY, Del Vecchio MT, Marsili S, Placa ML, Intrivici C, Aquino A, Micheli L, Nencini C, et al: Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients. J Clin Oncol 2005, 23:8950-8958.
    114. Suzuki E, Sun J, Kapoor V, Jassar AS, Albelda SM: Gemcitabine has significant immunomodulatory activity in murine tumor models independent of its cytotoxic effects. Cancer Biol Ther 2007, 6:880-885.
    115. Lin KY, Guarnieri FG, Staveley-O'Carroll KF, Levitsky HI, August JT, Pardoll DM, Wu TC: Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Research 1996, 56:21-26.
    116. Brasel K, De Smedt T, Smith JL, Maliszewski CR: Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood 2000, 96:3029-3039.
    117. Sher YP, Liu SJ, Chang CM, Lien SP, Chen CH, Han Z, Li LY, Chen JS, Wu CW, Hung MC: Cancer-targeted BikDD gene therapy elicits protective antitumor immunity against lung cancer. Mol Cancer Ther 2011, 10:637-647.
    118. Liu C, Lou Y, Lizee G, Qin H, Liu S, Rabinovich B, Kim GJ, Wang YH, Ye Y, Sikora AG, et al: Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice. J Clin Invest 2008, 118:1165-1175.
    119. Biswas SK, Mantovani A: Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010, 11:889-896.
    120. Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A: Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 2005, 6:769-776.
    121. Krumbiegel D, Zepp F, Meyer CU: Combined Toll-like receptor agonists synergistically increase production of inflammatory cytokines in human neonatal dendritic cells. Human Immunology 2007, 68:813-822.
    122. Grossmann C, Tenbusch M, Nchinda G, Temchura V, Nabi G, Stone GW, Kornbluth RS, Uberla K: Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands. BMC Immunol 2009, 10:43.
    123. Shirota Y, Shirota H, Klinman DM: Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. Journal of Immunology 2012, 188:1592-1599.
    124. Huang Z, Yang Y, Jiang Y, Shao J, Sun X, Chen J, Dong L, Zhang J: Anti-tumor immune responses of tumor-associated macrophages via toll-like receptor 4 triggered by cationic polymers. Biomaterials 2013, 34:746-755.
    125. Peng J, Tsang JY, Li D, Niu N, Ho DH, Lau KF, Lui VC, Lamb JR, Chen Y, Tam PK: Inhibition of TGF-beta signaling in combination with TLR7 ligation re-programs a tumoricidal phenotype in tumor-associated macrophages. Cancer Letters 2013, 331:239-249.
    126. Zhang Y, Luo F, Cai Y, Liu N, Wang L, Xu D, Chu Y: TLR1/TLR2 agonist induces tumor regression by reciprocal modulation of effector and regulatory T cells. Journal of Immunology 2011, 186:1963-1969.
    127. Jacobs C, Duewell P, Heckelsmiller K, Wei J, Bauernfeind F, Ellermeier J, Kisser U, Bauer CA, Dauer M, Eigler A, et al: An ISCOM vaccine combined with a TLR9 agonist breaks immune evasion mediated by regulatory T cells in an orthotopic model of pancreatic carcinoma. International Journal of Cancer 2011, 128:897-907.
    128. Zhu Q, Egelston C, Gagnon S, Sui Y, Belyakov IM, Klinman DM, Berzofsky JA: Using 3 TLR ligands as a combination adjuvant induces qualitative changes in T cell responses needed for antiviral protection in mice. Journal of Clinical Investigation 2010, 120:607-616.
    129. Sivori S, Falco M, Della Chiesa M, Carlomagno S, Vitale M, Moretta L, Moretta A: CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc Natl Acad Sci U S A 2004, 101:10116-10121.
    130. Qiu F, Maniar A, Diaz MQ, Chapoval AI, Medvedev AE: Activation of cytokine-producing and antitumor activities of natural killer cells and macrophages by engagement of Toll-like and NOD-like receptors. Innate Immun 2011, 17:375-387.
    131. Lauzon NM, Mian F, MacKenzie R, Ashkar AA: The direct effects of Toll-like receptor ligands on human NK cell cytokine production and cytotoxicity. Cell Immunol 2006, 241:102-112.
    132. Krieg AM: CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002, 20:709-760.
    133. Krug A, Rothenfusser S, Hornung V, Jahrsdorfer B, Blackwell S, Ballas ZK, Endres S, Krieg AM, Hartmann G: Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur J Immunol 2001, 31:2154-2163.
    134. Rothenfusser S, Hornung V, Ayyoub M, Britsch S, Towarowski A, Krug A, Sarris A, Lubenow N, Speiser D, Endres S, Hartmann G: CpG-A and CpG-B oligonucleotides differentially enhance human peptide-specific primary and memory CD8+ T-cell responses in vitro. Blood 2004, 103:2162-2169.
    135. Ballas ZK: Modulation of NK cell activity by CpG oligodeoxynucleotides. Immunol Res 2007, 39:15-21.
    136. Katsuda M, Iwahashi M, Matsuda K, Miyazawa M, Nakamori M, Nakamura M, Ojima T, Iida T, Hayata K, Yamaue H: Comparison of different classes of CpG-ODN in augmenting the generation of human epitope peptide-specific CTLs. Int J Oncol 2011, 39:1295-1302.
    137. Kolumam GA, Thomas S, Thompson LJ, Sprent J, Murali-Krishna K: Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J Exp Med 2005, 202:637-650.
    138. Speiser DE, Lienard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F, Krieg AM, Cerottini JC, Romero P: Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest 2005, 115:739-746.
    139. Valmori D, Souleimanian NE, Tosello V, Bhardwaj N, Adams S, O'Neill D, Pavlick A, Escalon JB, Cruz CM, Angiulli A, et al: Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proc Natl Acad Sci U S A 2007, 104:8947-8952.
    140. Brody JD, Ai WZ, Czerwinski DK, Torchia JA, Levy M, Advani RH, Kim YH, Hoppe RT, Knox SJ, Shin LK, et al: In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol 2010, 28:4324-4332.
    141. Haining WN, Davies J, Kanzler H, Drury L, Brenn T, Evans J, Angelosanto J, Rivoli S, Russell K, George S, et al: CpG oligodeoxynucleotides alter lymphocyte and dendritic cell trafficking in humans. Clin Cancer Res 2008, 14:5626-5634.
    142. Deng GM, Nilsson IM, Verdrengh M, Collins LV, Tarkowski A: Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat Med 1999, 5:702-705.
    143. Heikenwalder M, Polymenidou M, Junt T, Sigurdson C, Wagner H, Akira S, Zinkernagel R, Aguzzi A: Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat Med 2004, 10:187-192.
    144. Shargh VH, Jaafari MR, Khamesipour A, Jaafari I, Jalali SA, Abbasi A, Badiee A: Liposomal SLA co-incorporated with PO CpG ODNs or PS CpG ODNs induce the same protection against the murine model of leishmaniasis. Vaccine 2012, 30:3957-3964.
    145. Zoglmeier C, Bauer H, Norenberg D, Wedekind G, Bittner P, Sandholzer N, Rapp M, Anz D, Endres S, Bourquin C: CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clinical Cancer Research 2011, 17:1765-1775.
    146. Lepique AP, Daghastanli KR, Cuccovia IM, Villa LL: HPV16 tumor associated macrophages suppress antitumor T cell responses. Clinical Cancer Research 2009, 15:4391-4400.
    147. Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP: Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Research 2005, 65:3437-3446.
    148. LaRosa DF, Gelman AE, Rahman AH, Zhang J, Turka LA, Walsh PT: CpG DNA inhibits CD4+CD25+ Treg suppression through direct MyD88-dependent costimulation of effector CD4+ T cells. Immunology Letters 2007, 108:183-188.
    149. Marabelle A, Kohrt H, Sagiv-Barfi I, Ajami B, Axtell RC, Zhou G, Rajapaksa R, Green MR, Torchia J, Brody J, et al: Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J Clin Invest 2013, 123:2447-2463.
    150. Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012, 12:252-264.
    151. Ramsay AG: Immune checkpoint blockade immunotherapy to activate anti-tumour T-cell immunity. Br J Haematol 2013, 162:313-325.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE