研究生: |
楊世邦 Yang, Shih-Pang |
---|---|
論文名稱: |
藉由最佳化實驗設計提高及改善STRONG之計算效率 Improving the efficiency of STRONG with optimal designs in the presence of model misspecifications |
指導教授: | 張國浩 |
口試委員: |
吳建瑋
林春成 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 33 |
中文關鍵詞: | STRONG 、模擬最佳化 、最佳化實驗設計 |
外文關鍵詞: | STRONG, simulation optimization, optimal designs |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨機信賴區域反應曲面法 (STRONG)是一具有收斂及自動特性的反應曲面法。STRONG一個很重要的假設是,它的反應曲面與模型是具有同樣型式的;換句話說,是一個一階模型或二階模型。在許多的真實問題中,反應曲面往往是非常不具有線性特性以及難以預測的。在本篇論文中,我們調查最佳化實驗設計運用在一階模型以及二階模型的方法,以用來解釋模型誤解問題。我們也提出了漸進式的實驗設計架構使其與最佳化實驗設計結合,用來改進STRONG在計算上的效率。數值實驗驗證了我們所提出來的新的實驗設計架構確實能有效改善STRONG在計算上的效率。
Stochastic Trust-Region Response-Surface Method (STRONG) is an improved response surface method that possesses automation property and convergence guarantee. One important assumption underlying STRONG is that the response surface is of the same form as the metamodels, i.e., either a first- or second-order model. In many real problems, however, the response surface is very nonlinear and unpredictable. In this paper, we investigate the optimal first- and second-order designs in the presence of model misspecifications. We propose a sequential design framework that integrates these designs to improve the computational efficiency of STRONG. Numerical experiments verify the effectiveness of the proposed sequential design framework.
Barton, R.R., J.S. Ivey. 1996. Nelder-Mead simplex modications for simulation
optimization. Management Science 42(7) 954{973.
Box, G.E.P., N.R. Draper. 1959. A basis for the selection of a response surface
design. Journal of the American Statistical Association 54 622{654.
Box, G.E.P., N.R. Draper. 1963. The choice of a second order rotatable design.
Biometrika 50 335{352.
Box, G.E.P., K.B. Wilson. 1951. On the experimental attainment of optimum
conditions. Journal of Royal Statistical Society 13 1{38.
Buchholz, P., A. Thummler. 2005. Enhancing evolutionary algorithms with statistical
selection procedures for simulation optimization. M.E. Kuhl, N.M. Steiger,
F.B. Armstrong, J.A. Joines, eds., Proceeding of the 2005 Winter Simulation
Conference. 842{852.
Chang, K.-H. 2012. Stochasitc nelder-mead simplex method - A new globally
convergent direct search method for simulation optimization. European Journal
of Operational Research 220(3) 684{694.
Chang, K.-H., L.J. Hong, H. Wan. 2013. Stochastic trust-region response-surface
method (STRONG) - A new response-surface framework for simulation optimization.
INFORMS Journal on Computing 25(2) 230{243.
Conn, A.R., N.L.M. Gould, P.L. Toint. 2000. Trust-Region Methods. SIAM.
Donohue, J.M., E.C. Houck, R.H. Myers. 1992. Simulation designs for quadratic
response surface models in the presence of model misspecication. Management
Science 38(12) 1765{1791.
Donohue, J.M., E.C. Houck, R.H. Myers. 1995. Simulation designs for the estimation
of quadratic response surface gradients in the presence of model misspeci-
cation. Management Science 41(2) 244{262.
Fu, M.C. 2002. Optimization for simulation: Theroy vs. practice. INFORMS
Journal on Computing 14 192{227.
Fu, M.C., F.W. Glover, J. April. 2005. Simulation optimization: A review, new
developments, and applications. M.E. Kuhl, N.M. Steiger, F.B. Armstrong, J.A.
Joines, eds., Proceedings of the 2005 Winter Simulation Conference. 83{95.
Khuri, A.I., J.A. Cornell. 1996. Response Surfaces: Designs and Analyses. Marcel
Dekker, New York.
Kushner, H.J., G.G. Yin. 1997. Stochastic Approximation Algorithms and Appli-
cations. Springer-Verlag, New York.
L'Ecuyer, P. 1994. Eciency improvement and variance reduction. Proceeding of
the 1994 Winter Simulation Conference. 122{132.
Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller. 1953.
Equations of stage calculations by fast computing machines. JOurnal of Chem-
ical Physics 21(6) 1087{1092.
More, J.J., B.S. Garbow, K.E. Hillstrom. 1981. Testing unconstrained optimization
software. ACM Transactions on Mathematical Software 7 17{41.
Myers, R.H., D.C. Montgomery, C.M. Anderson-Cook. 2009. Response Surface
Methodology-Process and Product Optimization Using Designed Experiments.
John Wiley and Sons., New York.
Neddermeijer, H.G., G.J.V. Oortmarssen. 2000. A framework for response surface
methodology for simulation optimization. Proceeding of the 2000 Winter
Simulation Conference. 129{136.
Nelder, J.A., R. Mead. 1965. A simplex method for function minimization. Com-
puter J. 7 308{313.
Nicolai, R.P., R. Dekker, N. Piersma, G.J.V. Oortmarssen. 2004. Automated
response surface methodology for stochastic optimization models with unknown
variance. R.G. Ingalls, M.D. Rossetti, J.S. Smith, B.A. Peters, eds., Proceedings
of the 2004 Winter Simulation Conference. 491{499.
Robbins, H., S. Monro. 1951. A stochastic aproximation method. The Annals of
Mathematical Statistics 22 400{407.
Shapiro, A., D. Dentcheva, A. Ruszczynski. 2009. Lectures on Stochastic Pro-
gramming: Modeling and Theory. SIAM-Society for Industrial and Applied
Mathematics.
Spall, J.C. 1999. Stochastic Optimization, Stochastic Approximation and Simulated
Annealing. Encyclopedia of Electrical and Electronics, John Wiley & Sons., New
York.
Tekin, E., I. Sabuncuoglu. 2004. Simulation optimizataion: A comprehencisve
review on theory and applications. IIE Transactions 36 1067{1081.
Van, W., J.P.C. Kleijnen. 1977. Minimizing waiting times using priority classes:
A case study in response surface methodology. Discussion Paper FEW 77.