簡易檢索 / 詳目顯示

研究生: 林暉皓
論文名稱: 果蠅調控二氧化碳躲避行為之神經網路轉軌機制
Parallel neural pathways mediate CO2 avoidance responses in Drosophila
指導教授: 江安世
口試委員: 孫以瀚
簡正鼎
楊嘉鈴
張壯榮
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 72
中文關鍵詞: 果蠅神經網路行為
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 感官訊息可藉由不同強度的刺激進而產生不同的感覺或行為反應,暗示外界的訊息藉由腦內神經網路將單一訊息由具有重疊性和專一性的第一層感官神經接收,再傳遞到下一階層的不同神經網路到更高層的腦神經中心。果蠅利用特定的第一層嗅覺神經元 (olfactory sensory neurons)來偵測環境的二氧化碳,並將二氧化碳的訊息傳遞到腦內第一層嗅覺中心-嗅葉 (Antennal lobes),接著分別由不同種型態的嗅覺投射神經元 (projection neurons)把接收到的訊息分別傳遞至腦內不同的更高層腦神經中心。此實驗中,我們主要發現果蠅利用腦內一系列複雜神經網路的轉軌機制,進而區分環境不同濃度的二氧化碳。 目前我們發現有兩種不同的神經迴路-分別為PNv-1和PNv-2神經迴路分別參與低濃度和高濃度下二氧化碳引發的躲避行為。低濃度的二氧化碳啟動PNv-1的單一神經迴路,相反的高濃度的二氧化碳會啟動全部PNv的神經迴路。然而在高濃度的二氧化碳下會啟動第三種類的PNv-抑制性的PNv-3 神經元,這一類神經元會抑制PNv-1神經迴路所產生的躲避行為。此實驗結果讓我們更進一步了解神經網路是如何在單一外界感官刺激下藉由不同的濃度或是在不同的狀況下藉由調節神經網路活性,讓外界感官訊息可以在神經網路間進行轉軌,最後產生適當的行為表現。


    Different stimuli intensities elicit distinct perceptions or responses, implying that input signals are either conveyed through an overlapping but unique sub-population of sensory neurons or channeled into divergent brain circuits according to intensity. Carbon dioxide (CO2) is detected by a single type of olfactory sensory neuron (OSN) but is conveyed to higher brain centers through a diverse assortment of second-order projection neurons (PNs). We identified the circuitry that mediates Drosophila avoidance to different CO2 concentrations. Two distinct pathways, PNv-1 and PNv-2, are necessary and sufficient for avoidance responses to low and high CO2 concentrations, respectively. Low concentrations only activate PNv-1, but high concentrations activate both PNvs. However, high CO2 concentrations also activate a third PNv class, the γ-aminobutyric acid (GABA)ergic releasing PNv-3 neurons, which may inhibit PNv-1 pathway-mediated avoidance behavior. A circuit configuration that channels a common sensory input into distinct neural pathways would allow the perception of or the response elicited by a given odor to be further modulated by both stimulus intensity and context.

    Abstract ---------------------------------------------------------------------------------------------3 中文摘要 -------------------------------------------------------------------------------------------4 1. Introduction ---------------------------------------------------------------------------------5 1.1. Specific Aim --------------------------------------------------------------------------5 1.2. The Drosophila as the animal model to study the neuronal circuits for innate behavior ------------------------------------------------------------------------------5 1.3. Olfactory sensory neurons in the Drosophila brain ------------------------------6 1.4. Projection neurons in the Drosophila brain ---------------------------------------7 1.5. Olfactory higher brain centers- MBs and LHs -----------------------------------7 1.6. Neural circuits in the OSNs level for innate behaviors -------------------------8 1.7. Neural circuits in the higher brain centers for innate behaviors --------------8 1.8. CO2 as the attraction cue for many insects ----------------------------------------9 1.9. CO2 as the aversive cue for eliciting avoidance behavior in Drosophila ------9 2. Material and Methods ---------------------------------------------------------------------10 2.1. Plasmid constructs -------------------------------------------------------------------10 2.2. Fly strains ----------------------------------------------------------------------------12 2.3. PaGFP labeling ----------------------------------------------------------------------12 2.4. Single neuron imaging --------------------------------------------------------------13 2.5. Immunolabeling and confocal imaging ------------------------------------------13 2.6. In vivo GCaMP imaging ----------------------------------------------------------14 2.7. Behavior assays --------------------------------------------------------------------15 2.8. Fluorescent intensity measurement -----------------------------------------------15 2.9. Statistics ------------------------------------------------------------------------------16 3. Result ---------------------------------------------------------------------------------------------17 3.1. Tracing the V-glomerulus circuits by PaGFP technique -----------------------17 3.2. The V-glomerulus circuits in the Flycircuit Database --------------------------18 3.3. Identification of specific PNv-Gal4 drivers ---------------------------------------19 3.4. Functional response for different types of PNv ----------------------------------20 3.5. Silencing of neural activity in PNv-1 and PNv-2 neurons disruption of CO2 avoidance behavior -----------------------------------------------------------22 3.6. PNv-1 or PNv-2 neurons alone is sufficient to trigger avoidance behavior --24 3.7. The functions of PNv-3 neurons --------------------------------------------------25 4. Discussion --------------------------------------------------------------------------------------27 4.1 Olfactory Representation in the Drosophila brain -----------------------------27 4.2 Information process for innate behavior ------------------------------------------27 4.3 Neural circuits interaction in the Drosophila brain ----------------------------28 4.4 Information routing in the Drosophila brain -------------------------------------29 4.5 New strategy for study neural circuits mediate behavior -----------------------30 5. Reference --------------------------------------------------------------------------------------31 6. Figures and Figure legends ----------------------------------------------------------------39 7. Appendix ---------------------------------------------------------------------------------------70 7.1 Publications ---------------------------------------------------------------------------70 9. Acknowledgement ----------------------------------------------------------------------------71

    • Ai, M., Min, S., Grosjean, Y., Leblanc, C., Bell, R., Benton, R., and Suh, G.S. (2010). Acid sensing by the Drosophila olfactory system. Nature 468, 691-695.
    • Baines, R.A., Uhler, J.P., Thompson, A., Sweeney, S.T., and Bate, M. (2001). Altered electrical properties in Drosophila neurons developing without synaptic transmission. The Journal of neuroscience : the official journal of the Society for Neuroscience 21, 1523-1531.
    • Chiang, A.S., Lin, C.Y., Chuang, C.C., Chang, H.M., Hsieh, C.H., Yeh, C.W., Shih, C.T., Wu, J.J., Wang, G.T., Chen, Y.C., et al. (2011). Three-Dimensional Reconstruction of Brain-wide Wiring Networks in Drosophila at Single-Cell Resolution. Curr Biol 21, 1-11.
    • Clyne, P.J., Certel, S.J., de Bruyne, M., Zaslavsky, L., Johnson, W.A., and Carlson, J.R. (1999). The odor specificities of a subset of olfactory receptor neurons are governed by Acj6, a POU-domain transcription factor. Neuron 22, 339-347.
    • Cooperband, M.F., and Carde, R.T. (2006). Orientation of Culex mosquitoes to carbon dioxide-baited traps: flight manoeuvres and trapping efficiency. Medical and veterinary entomology 20, 11-26.
    • Couto, A., Alenius, M., and Dickson, B.J. (2005). Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 15, 1535-1547.
    • Datta, S.R., Vasconcelos, M.L., Ruta, V., Luo, S., Wong, A., Demir, E., Flores, J., Balonze, K., Dickson, B.J., and Axel, R. (2008). The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452, 473-477.
    • Feinberg, E.H., Vanhoven, M.K., Bendesky, A., Wang, G., Fetter, R.D., Shen, K., and Bargmann, C.I. (2008). GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353-363.
    • Fischler, W., Kong, P., Marella, S., and Scott, K. (2007). The detection of carbonation by the Drosophila gustatory system. Nature 448, 1054-1057.
    • Fishilevich, E., and Vosshall, L.B. (2005). Genetic and functional subdivision of the Drosophila antennal lobe. Curr Biol 15, 1548-1553.
    • Gao, Q., Yuan, B., and Chess, A. (2000). Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nature neuroscience 3, 780-785.
    • Gordon, M.D., and Scott, K. (2009). Motor control in a Drosophila taste circuit. Neuron 61, 373-384.
    • Goyret, J. (2008). The breath of a flower: CO(2) adds another channel-and then some-to plant-pollinator interactions. Communicative & integrative biology 1, 66-68.
    • Hallem, E.A., and Carlson, J.R. (2006). Coding of odors by a receptor repertoire. Cell 125, 143-160.
    • Hong, S.T., Bang, S., Hyun, S., Kang, J., Jeong, K., Paik, D., Chung, J., and Kim, J. (2008). cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila. Nature 454, 771-775.
    • Ito, K., Awano, W., Suzuki, K., Hiromi, Y., and Yamamoto, D. (1997). The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124, 761-771.
    • Jefferis, G.S., Marin, E.C., Stocker, R.F., and Luo, L. (2001). Target neuron prespecification in the olfactory map of Drosophila. Nature 414, 204-208.
    • Jefferis, G.S., Potter, C.J., Chan, A.M., Marin, E.C., Rohlfing, T., Maurer, C.R., Jr., and Luo, L. (2007). Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128, 1187-1203.
    • Jenett, A., Rubin, G.M., Ngo, T.T., Shepherd, D., Murphy, C., Dionne, H., Pfeiffer, B.D., Cavallaro, A., Hall, D., Jeter, J., et al. (2012). A GAL4-driver line resource for Drosophila neurobiology. Cell reports 2, 991-1001.
    • Joiner, W.J., Crocker, A., White, B.H., and Sehgal, A. (2006). Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441, 757-760.
    • Jones, W.D., Cayirlioglu, P., Kadow, I.G., and Vosshall, L.B. (2007). Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445, 86-90.
    • Kazama, H., and Wilson, R.I. (2009). Origins of correlated activity in an olfactory circuit. Nature neuroscience 12, 1136-1144.
    • Kurtovic, A., Widmer, A., and Dickson, B.J. (2007). A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446, 542-546.
    • Kwon, J.Y., Dahanukar, A., Weiss, L.A., and Carlson, J.R. (2007). The molecular basis of CO2 reception in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 104, 3574-3578.
    • Larsson, M.C., Domingos, A.I., Jones, W.D., Chiappe, M.E., Amrein, H., and Vosshall, L.B. (2004). Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703-714.
    • Lee, T., Lee, A., and Luo, L. (1999). Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126, 4065-4076.
    • Lin, H.H., Lai, J.S., Chin, A.L., Chen, Y.C., and Chiang, A.S. (2007). A map of olfactory representation in the Drosophila mushroom body. Cell 128, 1205-1217.
    • Lu, T., Qiu, Y.T., Wang, G., Kwon, J.Y., Rutzler, M., Kwon, H.W., Pitts, R.J., van Loon, J.J., Takken, W., Carlson, J.R., et al. (2007). Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Curr Biol 17, 1533-1544.
    • Manoli, D.S., and Baker, B.S. (2004). Median bundle neurons coordinate behaviours during Drosophila male courtship. Nature 430, 564-569.
    • Manoli, D.S., Foss, M., Villella, A., Taylor, B.J., Hall, J.C., and Baker, B.S. (2005). Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 436, 395-400.
    • Marin, E.C., Jefferis, G.S., Komiyama, T., Zhu, H., and Luo, L. (2002). Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243-255.
    • Mombaerts P. (2009). Seven-transmembrane proteins as odorant and chemosensory receptors. Science 286, 707-711.
    • Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., and Bamberg, E. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences of the United States of America 100, 13940-13945.
    • Olsen, S.R., Bhandawat, V., and Wilson, R.I. (2007). Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe (vol 54, pg 89, 2007). Neuron 54, 667-667.
    • Olsen, S.R., and Wilson, R.I. (2008). Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452, 956-960.
    • Patterson, G.H., and Lippincott-Schwartz, J. (2002). A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873-1877.
    • Ruta, V., Datta, S.R., Vasconcelos, M.L., Freeland, J., Looger, L.L., and Axel, R. (2010). A dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature 468, 686-690.
    • Semmelhack, J.L., and Wang, J.W. (2009). Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature 459, 218-223.
    • Shang, Y.H., Claridge-Chang, A., Sjulson, L., Pypaert, M., and Miesenbock, G. (2007). Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128, 601-612.
    • Southwick, E.E., and Moritz, R.F.A. (1987). Social-Control of Air Ventilation in Colonies of Honey-Bees, Apis-Mellifera. J Insect Physiol 33, 623-626.
    • Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L., and Dickson, B.J. (2005). Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795-807.
    • Stopfer, M., Jayaraman, V., and Laurent, G. (2003). Intensity versus identity coding in an olfactory system. Neuron 39, 991-1004.
    • Su, C.Y., Menuz, K., Reisert, J., and Carlson, J.R. (2012). Non-synaptic inhibition between grouped neurons in an olfactory circuit. Nature 492, 66-71.
    • Suh, G.S., Ben-Tabou de Leon, S., Tanimoto, H., Fiala, A., Benzer, S., and Anderson, D.J. (2007). Light activation of an innate olfactory avoidance response in Drosophila. Curr Biol 17, 905-908.
    • Suh, G.S., Wong, A.M., Hergarden, A.C., Wang, J.W., Simon, A.F., Benzer, S., Axel, R., and Anderson, D.J. (2004). A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431, 854-859.
    • Tanaka, N.K., Awasaki, T., Shimada, T., and Ito, K. (2004). Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr Biol 14, 449-457.
    • Turner, S.L., and Ray, A. (2009). Modification of CO2 avoidance behaviour in Drosophila by inhibitory odorants. Nature 461, 277-281.
    • Tye, K.M., and Deisseroth, K. (2012). Optogenetic investigation of neural circuits underlying brain disease in animal models. Nature reviews Neuroscience 13, 251-266.
    • Vosshall, L.B. (2000). Olfaction in Drosophila. Current opinion in neurobiology 10, 498-503.
    • Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A., and Axel, R. (1999). A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96, 725-736.
    • Wang, J., Ma, X., Yang, J.S., Zheng, X., Zugates, C.T., Lee, C.H., and Lee, T. (2004). Transmembrane/juxtamembrane domain-dependent Dscam distribution and function during mushroom body neuronal morphogenesis. Neuron 43, 663-672.
    • Wang, J.W., Wong, A.M., Flores, J., Vosshall, L.B., and Axel, R. (2003a). Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271-282.
    • Wang, Y., Chiang, A.S., Xia, S., Kitamoto, T., Tully, T., and Zhong, Y. (2003b). Blockade of neurotransmission in Drosophila mushroom bodies impairs odor attraction, but not repulsion. Curr Biol 13, 1900-1904.
    • Wilson, R.I., and Laurent, G. (2005). Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. The Journal of neuroscience 25, 9069-9079.
    • Wilson, R.I., Turner, G.C., and Laurent, G. (2004). Transformation of olfactory representations in the Drosophila antennal lobe. Science 303, 366-370.
    • Wong, A.M., Wang, J.W., and Axel, R. (2002). Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229-241.
    • Yu, D., Ponomarev, A., and Davis, R.L. (2004). Altered representation of the spatial code for odors after olfactory classical conditioning; memory trace formation by synaptic recruitment. Neuron 42, 437-449.
    • Zhu, S., Chiang, A.S., and Lee, T. (2003). Development of the Drosophila mushroom bodies: elaboration, remodeling and spatial organization of dendrites in the calyx. Development 130, 2603-2610.
    • Zwiebel, L.J., and Takken, W. (2004). Olfactory regulation of mosquito-host interactions. Insect biochemistry and molecular biology 34, 645-652.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE