簡易檢索 / 詳目顯示

研究生: 郭宗翰
Kuo, Tsung-Han
論文名稱: Characterization of the Vigna radiata dehydrin (VrDHN) promoter in transgenic Arabidopsis plants
綠豆脫水蛋白啟動子於轉殖株阿拉伯芥之分析
指導教授: 林彩雲
Lin, Tsai-Yun
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 56
中文關鍵詞: VrDhn基因LEA蛋白啟動子
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 農作物的生長及收穫量取決於水份和養分的供給及溫度的變化。在外界環境壓力下,植物活化特定基因來抵抗逆境。在缺水和低溫的狀況下會誘導第二型的LEA蛋白(late embryogenesis abundant protein),又名脫水蛋白(dehydrin),會累積在植物體內。本實驗室已將綠豆脫水蛋白基因分離出來並發現當膨壓在0.1 MPa時基因的表現量會遽增。本論文的目的在於分離和分析綠豆脫水蛋白基因的啟動子區域及分析不同啟動子區域的活性,其方法是不同區域的啟動子片段構築於報導基因β-glucuronidase (GUS)之前,並作暫時性的表達將DNA導入大豆原生質體,並利用GUS表現量分析啟動子的強度,在未經任何逆境處理下,綠豆脫水蛋白啟動子的強度大約為花椰菜鑲嵌病毒35S啟動子的十分之一。另一方面,我們也將構築好的載體轉殖至阿拉伯芥中,同樣利用GUS表現量分析啟動子的活性,發現在受粉後第六天活化並持續至種子成熟。另外,分析轉殖植株不同區域啟動子發現,−998 to −843這段區域對於抑制綠豆脫水蛋白基因的表現扮演重要角色。


    Plant and crop production are influenced by water accessibility, nutrition supplement and temperature fluctuation. To cope with environmental challenges, a huge set of genes is transcriptionally activated. Many proteins accumulated under dehydration and/or low-temperature conditions, there are also at the same time such as the group 2 LEA protein dehydrin. The mungbean (Vigna radiata) dehydrin VrDHN was isolated previously by our laboratory members. The VrDHN mRNA level was found to increase remarkably when the turgor potential of plant reaches 0.10 MPa. In this study the promoter of the VrDHN gene was isolated and characterized. To characterized the promoter activity, a series of constructs containing different promoter regions fused to the β-glucuronidase (GUS) reporter gene were transiently and stably transformed then subject to histochemical and fluorometric assays. Through transient assay and histochemical and fluorometric assays. The results from transient assay showed that the VrDHN promoter processes about 1/10 activity of the CaMV35S promoted. Analysis of the transgenic Arabidpsis plants indicated the VrDHN promoter is activated at 6 DAP then the activity in seeds after maturation. The VrDHN promoter activity diminished soon after germination. Deletion analysis showed that the −998 to −843 region is important to repress the VrDHN expression.

    摘要••••••••••••••••••••••••••••••••i Abstract••••••••••••••••••••••••••••••ii 謝誌•••••••••••••••••••••••••••••••iii Table of Contents••••••••••••••••••••••••••iv List of Tables••••••••••••••••••••••••••••vi List of Figures•••••••••••••••••••••••••••vii List of Appendixes•••••••••••••••••••••••••ix Abbreviations•••••••••••••••••••••••••••x Introduction••••••••••••••••••••••••••••1 Materials and Methods••••••••••••••••••••••••5 1. Plant growth condition•••••••••••••••••••••5 2. Stress treatments•••••••••••••••••••••••6 3. Genomic DNA extraction••••••••••••••••••••6 4. Total cellular RNA extraction••••••••••••••••••8 5. Cloning of VrDHN promoter and construction of promoter-reporter gene fusions••••••••••••••••••••••••••••9 6. Primer extension experiment••••••••••••••••••12 7. Large- scale plasmid DNA preparation••••••••••••••14 8. PEG-mediated protoplast transformation••••••••••••14 9. Quantification of RLUC and GUS activity in transformed protoplasts16 10. Genotyping of transgenic plants••••••••••••••••17 11. Histochemical staining and fluorometric quantification of GUS activity in transgenic plants•••••••••••••••••••••17 12. Semi-quantitative RT-PCR••••••••••••••••••19 Results••••••••••••••••••••••••••••••20 Discussion•••••••••••••••••••••••••••••28 References••••••••••••••••••••••••••••32 Tables••••••••••••••••••••••••••••••38 Figures••••••••••••••••••••••••••••••41 Appendixes••••••••••••••••••••••••••••54

    1. Arndt, K. and Fink, G.R. (1986). GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5' TGACTC 3' sequences. Proc. Natl. Acad. Sci. U.S.A. 83:8516-20
    2. Baker, S.S, Wilhelm, K.S. and Thomashow, M.F. (1994). The 5’-flanking region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-, and ABA-regulated gene expression. Plant Mol. Biol. 24:701-713
    3. Boyle, B. and Brisson, N. (2001). Repression of the defense gene PR10a by the single-stranded DNA binding protein SEBF. Plant Cell 13:2525-2537
    4. Bray, E.A. (1993). Molecular responses to water deficit. Plant Physiol. 103:1035-1040
    5. Busk, P.K. and Pagès, M. (1998). Regulation of abscisic acid-induced transcription. Plant Mol. Biol. 3:425-35
    6. Chang, S., Puryear, J., Chirney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. 11:693-699
    7. Choi, D.W., Rodriguez, E.M. and Close, T.J. (2002). Barley Cbf3 gene identification, expression pattern, and map Location Plant Physiol. 129:1781–1787
    8. Dejardin, A., Sokolov, L.N. and Kleczkowski, L.A. (1999). Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem. J. 344:503-509
    9. Fujiwara, T. and Beachy, R.N. (1994). Tissue-specific and temporal regulation of a beta-conglycinin gene: roles of the RY repeat and other cis-acting elements. Plant Mol. Biol. 24:261-72
    10. Gao, M.J., Lydiate, D.J., Li, X., Lui, H., Gjetvaj, B., Hegedus, D.D. and Rozwadowski, K. (2009) Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell. 21:54-71
    11. Grace, M.L., Chandrasekharan, M.B., Hall, T.C. and Crowe, A.J. (2004). Sequence and spacing of TATA box elements are critical for accurate initiation from the beta-phaseolin promoter. J Biol. Chem. 279:8102-10
    12. Godoy, J.A., Lunar, R., Torresschumann, S., Moreno, J., Rodrigo, R.M. and Pintortoro, J.A. (1994). Expression, tissue distribution and subcellullar-localization of dehydrin Tas14 in salt-stressed tomato plants. Plant Mol. Biol. 26:1921-1934
    13. Gubler, F., Kalla, R., Roberts, J.K.and Jacobsen, J.V. (1995). Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell. 7:1879-91
    14. Guerriero, G., Martin, N., Golovko, A., Sundström, J.F., Rask, L., Ezcurra, I., (2009). The RY/Sph element mediates transcriptional repression of maturation genes from late maturation to early seedling growth. New Phytol. 184:552-65
    15. Hara, M., Terashima, T.F., Fukaya, T. and Kuboi, T. (2003). Enhancement of cold tolerance and inhibition of lipid preoxidation by citrus dehydrin in transgenic tobacco. Planta, 217:290-298
    16. Henriksson, E., Olsson, A.S., Johannesson, H., Johansson, H., Hanson, J., Engström, P. and Söderman, E. (2005). Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiol. 139:509-18
    17. Hundertmark, M. and Hincha, D.K. (2008). LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics. 9:118
    18. Johnson, R.R., Wagner, R.L., Verhey, S.D., Walker-Simmons, M.K. (2002). The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol. 130:837–846
    19. Koag, M.C., Fenton, R.D., Wilken, S., Close, T.J. (2003). The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol. 191:309-316
    20. Liu, W.Y., Chiou, S.J., Ko, C.Y. and Lin TY (2010). Functional characterization of three ethylene response factor genes from Bupleurum kaoi indicates that BkERFs mediate resistance to Botrytis cinerea. J Plant Physiol. 168:375-381
    21. Lessard, P.A., Allen, R.D., Bernier, F., Crispino, J.D., Fujiwara, T. and Beachy, R.N. (1991). Multiple nuclear factors interact with upstream sequences of differentially regulated beta-conglycinin genes. Plant Mol. Biol. 16:397-413
    22. Magyar, Z., Atanassova, A., De Veylder, L. and Rombauts S, Inzé D. (2000). Characterization of two distinct DP-related genes from Arabidopsis thaliana. FEBS Lett. 486:79-87
    23. Mönke, G., Altschmied, L., Tewes, A., Reidt, W., Mock, H.P., Bäumlein, H. and Conrad, U. (2004). Seed-specific transcription factors ABI3 and FUS3: molecular interaction with DNA. Planta. 219:158-66
    24. Niu, X., Helentjaris, T. and Bate, N. J. (2002). Maize ABI4 Binds Coupling Element1 in Abscisic Acid and Sugar Response Genes Plant Cell. 14: 2565–2575
    25. Nylander, M., Palva, E.T., Svensson, J. and Welin, B.V. (2001). Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol. Biol. 45:263-279
    26. Prieto-Dapena, P., Almoguera, C., Rojas, A. and Jordano, J. (1999). Seed-specific expression patterns and regulation by ABI3 of an unusual late embryogenesis-abundant gene in sunflower. Plant Mol. Biol. 39:615-27
    27. Puhakainen, T., Hess, M.W., Mäkelä, P., Svensson, J., Heino, P. and Palva, E.T. (2004). Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol. Biol. 54:743-753
    28. Roger, S. and Bendich, A.J. (1998). Extraction of DNA from plant tissues. Plant Mol. Biol. A6:1-10
    29. Sakai, H., Aoyama, T. and Oka, A. (2000). Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J. 24:703-11
    30. Shen, Q., Zhang, P. and Ho, T.H. (1996). Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell. 8:1107-1119
    31. Skriver K. and Mundy J. (1990). Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 2:503-512
    32. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. U.S.A. 97:11632-11637
    33. Wang, Z.Y., Kenigsbuch, D., Sun, L., Harel, E., Ong, M.S. and Tobin, E.M.A. (1997). Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell. 9:491-507
    34. Weinmann, P., Gossen, M., Hillen, W., Bujard, H. and Gatz, C. (1994). A chimeric transactivator allows tetracycline-responsive gene expression in whole plants. Plant J. 5:559-69
    35. Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell. 6:251-64
    36. Yanagisawa, S. and Schmidt, R.J. (1999). Diversity and similarity among recognition sequences of Dof transcription factors. Plant J. 17:209-214
    37. Yu, D., Chen, C. and Chen, Z. (2001). Evidence for an important role of WRKY DNA binding protein in the regulation of NPR1 gene expression. Plant Cell. 13:1527-1540
    38. Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53:247-273

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE