研究生: |
蔡宗岩 Tsai, Tsung-Yen |
---|---|
論文名稱: |
垂直排列奈米碳管之低溫製程與其轉印技術應用於軟性電子與有序週期陣列:場發射元件與光柵 The low temperature synthesis process of verticallyaligned carbon nanotubes and the transfer process for applications in soft electronics and periodic arrays: field emission device and light grating |
指導教授: |
戴念華
Tai, Nyan-Hwa |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 152 |
中文關鍵詞: | 奈米碳管 、場發射 、軟性電子 、光柵 |
外文關鍵詞: | carbon nanotubes, field emission, flexible electronics, grating |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以奈米Ni粉與銀膠配製而成的催化劑漿料網印於玻璃基板上,在500℃低溫條件下製備碳管以做為場發射陰極材料。適當的催化劑濃度可增加製備的成功率與提升場發射性質,而過高的催化劑濃度使得陰極於碳管成長過程中因體積膨脹導致脫落,過低的催化劑濃度使得陰極上的碳管覆蓋率過低而降低其場發射密度。
垂直碳管製程以Co/Ti為二元催化金屬,可在低溫(450℃)下於玻璃基板上或矽基板上製備垂直排列的奈米碳管陣列,Co/Ti催化劑的配比與基板的選擇對於碳管的最終成長高度影響頗深;純Co催化劑無法於低溫下直接成長出碳管,過高的Ti含量也無法在低溫下長出垂直碳管。矽基板於高溫(700℃)處理下容易與催化劑反應使催化劑活性降低而無法長出垂直碳管,此問題可以用兩階段控溫製程來避免催化劑受基板的毒化作用。此外,為了在微米級週期結構的表面上成長垂直奈米碳管陣列,在不同尺寸的PS球陣列上鍍製催化劑,實驗中發現,在Co/Ti的系統中以3 nm/3 nm的厚度比例是可以用在微米級的週期結構中。
轉印製程的研究分為硬式基板與軟性基板轉印法,以銀膠為轉印媒介適用於以硬式耐溫基板轉印高於20微米的奈米碳管陣列,可以轉印複雜的垂直碳管圖案,經轉印後碳管頂端結構為開口狀,適用於製作高電流密度之場發射陰極材料。另外開發軟性基板的轉印製程,可轉印5微米高度的垂直碳管陣列,轉印後圖案可以保持不變且線寬可小至5微米,於撓曲情況下仍具有場發射性質,且具有彎曲應變規的功能。
以自組裝奈米球為遮罩的微影製程經由使用毒化層的方式得到改善,可用以製作大面積且均勻的碳管週期陣列,由於陣列週期在可見光波長範圍因此表現出與可見光的繞射效果,此外由Si模光柵圖形化的製程可將碳管陣列轉印至軟性基板上,週期圖案可達到350 nm的尺度,結構週期與光譜分析符合射繞理論,利用此碳管陣列光柵可在視覺上達到全黑至彩光的效果。
In this work, Ni nanopowder mixed with commercial Ag-paste was screen-printed on glass substrate, and then growth of carbon nanotubes (CNTs) was performed in a chemical vapour deposition (CVD) chamber at 500 °C for fabricating field emitters. The proper concentration of catalyst enables to the successful production of cathode and enhances the field emission properties. However, higher catalyst concentration results in the cathode peeling off due to the volume expansion during the growth of CNT and lower catalyst concentration results of decrease in the emission sites due to the poor CNT coverage.
The growth of vertically aligned CNT (VA-CNT) on glass substrate at a low temperature of 450°C was demonstrated using Co/Ti bimetallic catalyst. It was found that the ratio of Co/Ti and the selection of substrate influence the CNT length; CNTs can not grow on glass substrate at lower temperature when pure Co layer or catalyst layer with excess Ti content was used. Si substrate reacts easily with catalyst under higher temperature (700°C), which decreases the catalyst activity and fails to grow VA-CNT. To overcome this problem, a two-step process was proposed which can prevent the catalyst from poisoning during CNT synthesis. Moreover, in order to grow VA-CNT array on the surface of micro-scale periodic structures, the catalyst was coated on the array composed of PS spheres with different sizes. It was found that the Co/Ti catalyst system with the ratio of 3 nm/3 nm in thickness could be used in micro-scale periodic structures.
The study of transfer process can be categorized into two sorts, one is for hard substrate and the other is for soft substrate. For transferring complicated VA-CNT pattern with a height higher than 20 □m onto a hard substrate, silver paste was adopted as transfer medium. After the transfer process, the CNTs with open-end structure fit them to fabricate the field emitter for the high current density applications. A direct transfer method was developed for transferring VA-CNT with height of about 5 □m onto soft substrate. After the transfer process, the VA-CNTs maintained their initial orientation in the designed pattern and showed the pattern even the line width is about 5 □m. The flexible device showed excellent emission performance even if under bending condition and exhibited the function of strain gauge for bending.
A self-assembly nano sphere lithography (NSL) mask for the fabrication of periodic CNT arrays was improved by adopting a catalyst-poisoning layer. Using this method, the uniformity of the CNT array could be improved by preventing the negative influence of arrangement defects in self-assembled monolayers. CNT array exhibited the diffraction of visible light due to the size and period within the wavelength scale. In addition, the process with Si mold for patterning a grating was capable of transferring CNT array onto flexible substrate. The periodic pattern could be in the scale of 350 nm. The structure period and spectra analysis match the diffraction theory. The vision from dark to iridescence was obtained by using the CNT grating.
[1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56 (1991)
[2] S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363, 603 (1993)
[3] Rice University: Rick Smalley’s Group Home Page Image Gallery
[4] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes & Carbon Nanotubes, San Diego: Academic Press (1996)
[5] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes”, Carbon, 33, 883 (1995)
[6] N. Hanada, S. I. Sawada, A. Oshiyama, “New One-Dimensional Conductor Microtubles”, Phys. Rev. Lett., 68, 1579 (1992)
[7] J. W. Mintmire, B. I. Dunlap, C. T. White, “Are Fullerene Tubles Metallic?”, Phys. Rev. Lett., 68, 631 (1992)
[8] R. Saito, M. Fujita, G. Dresselhaus, “Physical Properties of Carbon Nanotubes”, Imperial College (1998)
[9] M. B. Nardelli, B. I. Yakobson, and J. Bernholc, ‘‘Mechanism of strain release in carbon nanotubes’’, Phys. Rev. B., 57, 4277 (1998)
[10] Min-Feng Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, ‘‘Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties’’, Phys. Rev. Lett, 84, 5552 (2000)
[11] Y. Saito, S. Uemura, ‘‘Field emission from carbon nanotubes and its application to electron sources’’, Carbon, 38, 169 (2000)
[12] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, ‘‘Catalytic growth of single-walled nanotubes by laser vaporization’’, Chem. Phys. Lett., 243, 49 (1995)
[13] L. Ci, J. Wei, B. Wei, J. Liang, C. Xu, D. Wu, ‘‘Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method’’, Carbon, 39, 329 (2001)
[14] H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun and M. S. Dresselhaus, ‘‘Large-scale and low-cost synthesis of single-walled carbon nanotubes’’, Appl. Phys. Lett., 72, 3282 (1998)
[15] C. Bower, W. Zhu, S. Jin and O. Zhou, ‘‘Plasma-induced alignment of carbon nanotubes’’, Appl. Phys. Lett., 77, 830 (2000)
[16]M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, ‘‘Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition’’, Appl. Phys. Lett., 77, 3468 (2000)
[17] Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal and P. N. Provencio, ‘‘Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition’’, Appl. Phys. Lett., 73, 3845 (1998)
[18] C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. S. Dresselhaus, ‘‘Hydrogen storage in single-walled carbon nanotubes at room temperature’’, Science, 286, 1127 (1999)
[19] W. A. de Heer, A. Chatelain, D. Ugarte, ‘‘A carbon nanotube field-emission electron source’’, Science, 270, 1179 (1995)
[20] Y. H. Lee, Y. T. Jang, D. H. Kim, J. H. Ahn, B. K. Ju, ‘‘Realization of gated field emitters for electrophotonic applications using carbon nanotube line emitters directly grown into submicrometer holes’’, Adv. Mater., 13, 479 (2001)
[21] H. S. Kang, H. J. Yoon, C. O. Kim, J. P. Hong, I. T. Han, S. N. Cha, B. K. Song, J. E. Jung, N. S. Lee, J. M. Kim, ‘‘Low temperature growth of multi-wall carbon nanotubes assisted by mesh potential using a modified plasma enhanced chemical vapor deposition system’’, Chem. Phys. Lett., 349, 196 (2001)
[22] C. J. Lee, J. Park, S. Han, J. Ihm, ‘‘Growth and field emission of carbon nanotubes on sodalime glass at 550°C using thermal chemical vapor deposition’’, Chem. Phys. Lett., 337, 398 (2001)
[23] J. H. Han, S. H. Choi, T. Y. Lee, J. B. Yoo, C.-Y. Park, H. J. Kim, I.-T. Han, S. Yu, W. Yi, G. S. Park, M. Yang, N. S. Lee, J. M. Kim, ‘‘Effects of growth parameters on the selective area growth of carbon nanotubes’’, Thin Solid Films, 409, 126 (2002)
[24] S. J. Kyung, J. B. Park, J. H. Lee, G. Y. Yeom, ‘‘Improvement of field emission from screen-printed carbon nanotubes by He/(N2,Ar) atmospheric pressure plasma treatment’’, J. Appl. Phys., 100, 124303 (2006)
[25] T. J. Vink, M. Cillies, J. C. Kriege, H. W. J. J. Vande laar, ‘‘Enhanced field emission from printed carbon nanotubes by mechanical surface modification’’, Appl. Phys. Lett., 83, 3552 (2003)
[26] D. H. Kim, C. D. Kim, H. R. Lee, ‘‘Effects of the ion irradiation of screen-printed carbon nanotubes for use in field emission display applications’’, Carbon, 42, 1807 (2004)
[27] Y. C. Kim, K. H. Sohn, Y. M. Cho, E. H. Yoo, ‘‘Vertical alignment of printed carbon nanotubes by multiple field emission cycles’’, Appl. Phys. Lett., 84, 5350 (2004)
[28] A. Gohel, K. C. Chin, Y. W. Zhu, C. H. Sow, A. T. S. Wee, ‘‘Field emission properties of N2 and Ar plasma-treated multi-wall carbon nanotubes’’, Carbon, 43, 2530 (2005)
[29] K. F. Chen, K. C. Chen, Y. C. Jiang, L. Y. Jiang, Y. Y. Chang, M. C. Hsiao, L. H. Chan, ‘‘Field emission image uniformity improvement by laser treating carbon nanotube powders’’, Appl. Phys. Lett., 88, 193127 (2006)
[30] M. A. Guillorn, M. D. Hale, V. I. Merkulov, M. L. Simpson, ‘‘Integrally gated carbon nanotube field emission cathodes produced by standard microfabrication techniques’’, J. Vac. Sci. Technol. B, 21, 957 (2003)
[31] Y. Shiratori, H. Hiraoka, Y. Takeuchi, ‘‘One-step formation of aligned carbon nanotube field emitters at 400 °C’’, Appl. Phys. Lett., 82, 2485 (2003)
[32] Y. J. Li, Z. Sun, S. P. Lau, G. Y. Chen, B. K. Tay, ‘‘Carbon nanotube films prepared by thermal chemical vapor deposition at low temperature for field emission applications’’, Appl. Phys. Lett., 79, 1670 (2001)
[33] I. T. Han, H. J. Kim, Y. J. Park, N. Lee, J. E. Jang, J. W. Kim, J. E. Jung, J. M. Kim, ‘‘Fabrication and characterization of gated field emitter arrays with self-aligned carbon nanotubes grown by chemical vapor deposition’’, Appl. Phys. Lett., 81, 2070 (2002)
[34] Q. Li, J. Xu, K. Yu, Z. Zhu, T. Feng, X. Wang, X. Liu, W. P. Kang, J. L. Davidson, ‘‘Field emission characteristics of nodular carbon nanotubes’’, J. Vac. Sci. Technol. B, 21, 1684 (2003)
[35] G. Takeda, L. Pan, S. Akita, Y. Nakayama, ‘‘Vertically aligned carbon nanotubes grown at low temperatures for use in displays’’, Jnp. J. Appl. Phys., 44, 5642 (2005)
[36] Y. Nakayama, L. Pan, G. Takeda, ‘‘Low-temperature growth of vertically aligned carbon nanotubes using binary catalysts’’, Jpn. J. Appl. Phys., 45, 369 (2006)
[37] S. Sato, A. Kawabata, D. Kondo, M. Nihei, Y. Awano, ‘‘Carbon nanotube growth from titanium–cobalt bimetallic particles as a catalyst’’, Chem. Phys. Lett., 402, 149 (2005)
[38] M. P. Siegal, D. L. Overmyer and F. H. Kaatz, “Controlling the site density of multiwall carbon nanotubes via growth conditions”, Appl. Phys. Lett., 84, 5156 (2004)
[39] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi and M. Kohno, “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol”, Chem. Phys. Lett., 360, 229 (2002)
[40] M. Cantoro, S. Hofmann, S. Pisana, V. Scardaci, A. Parvez, C. Ducati, A. C. Ferrari, A. M. Blackburn, K. Y. Wang and J. Robertson, “Catalytic Chemical Vapor Deposition of Single-Wall Carbon Nanotubes at Low Temperatures”, Nano Letters, 6, 1107 (2006)
[41] L. Zhu, Y. Sun, D. W. Hess, C. P. Wong, ‘‘Well-aligned open-ended carbon nanotube architectures: an approach for device assembly’’, Nano. Lett., 6, 243 (2006)
[42] A. Kumar, V. L. Pushparaj, S. Kar, O. Nalamasu, and P. M. Ajayan, ‘‘Contact transfer of aligned carbon nanotube arrays onto conducting substrates’’, Appl. Phys. Lett., 89, 163120 (2006)
[43] T. Wang, B. Carlberg, M. Jönsson, G. H. Jeong, E. E. B. Campbell and J. Liu, ‘‘Low temperature transfer and formation of carbon nanotube arrays by imprinted conductive adhesive’’, Appl. Phys. Lett., 91, 093123 (2007)
[44] H. Jiang, L. Zhu, K. S. Moon1 and C. P. Wong, ‘‘Low temperature carbon nanotube film transfer via conductive polymer composites’’, Nanotechnology, 18, 125203 (2007)
[45] S. J. Kang, C. Kocabas, H. S. Kim, Q. Cao, M. A. Meitl, D. Y. Khang, J. A. Rogers, ‘‘Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications ’’, Nano. Lett., 7, 3343 (2007)
[46] Y. Zhou, L. Hu, and G. Grüner, “A method of printing carbon nanotube thin films”, Appl. Phys. Lett., 88, 123109 (2006)
[47] D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, ‘‘Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes’’, Nano Lett., 6, 1880 (2006)
[48] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, ‘‘Transparent, conductive carbon nanotube films’’, Science, 305, 1273 (2004)
[49] Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, ‘‘Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications’’, Nano Lett., 6, 413 (2006)
[50] E. B. Sansom, D. Rinderknecht and M. Gharib, ‘‘Controlled partial embedding of carbon nanotubes within flexible transparent layers ’’, Nanotechnology, 19, 035302 (2008)
[51] B. Aksak , M. Sitti, A. Cassell, J. Li, M. Meyyappan and P. Callen, “Friction of partially embedded vertically aligned carbon nanofibers inside elastomers”, Appl. Phys. Lett., 91, 061906 (2007)
[52] Y. Zhu, X. Lim1, M. C. Sim, C. T. Lim and C. H. Sow, “Versatile transfer of aligned carbon nanotubes with polydimethylsiloxane as the intermediate”, Nanotechnology, 19, 325304 (2008)
[53] Y. Chai, J. Gong, K. Zhang, P. C. H. Chan and M. M. F. Yuen, “Flexible transfer of aligned carbon nanotube films for integration at lower temperature”, Nanotechnology, 18, 355709 (2007)
[54] A. C. Allen, E. Sunden, A. Cannon, S. Graham, and W. King, “Nanomaterial transfer using hot embossing for flexible electronic devices”, Appl. Phys. Lett., 88, 083112 (2006)
[55] Y. Hayamizu, T. Yamada, K. Mizuno, R. C. Davis, D. N. Futaba, M. Yumura and K. Hata, “Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers”, Nature Nanotechnology , 3, 289 (2008)
[56] U. C. Fisher and H. P. Zingsheim, ‘‘Submicroscopic pattern replication with visible light’’, J. Vac. Sci. Technol., 19, 881 (1981)
[57] H. W. Deckman and J. H. Dunsmuir, ‘‘Natural lithography’’, Appl. Phys. Lett., 41, 377 (1982)
[58] H. W. Deckman and J. H. Dunsmuir, ‘‘Applications of surface textures produced with natural lithography’’, J. Vac. Sci. Technol. B, 1, 1109 (1983)
[59] A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Mohwald, A. Eychmuller, and H. Weller, ‘‘Nano- and microengineering: 3-D colloidal photonic crystals prepared from sub-□m-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells’’, Adv. Mater., 12, 333 (2000).
[60] J. C. Hulteen and R. P. Van Duyne, ‘‘Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces ’’, J. Vac. Sci. Technol. A, 13, 1553 (1995).
[61] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, ‘‘Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays’’, J. Phys. Chem., 103, 3854 (1999).
[62] M. Winzer, M. Kleiber, N. Dix, and R. Wiesendanger, ‘‘Rapid communication Fabrication of nano-dot- and nano-ring-arrays by nanosphere lithography’’, Appl. Phys. A, 63, 617 (1996).
[63] V. Kitaev and G. A. Ozin, ‘‘Self-assembled surface patterns of binary colloidal crystals’’, Adv. Mater., 15, 75 (2003).
[64] H. Ko, H. W. Lee, and J. Moon, ‘‘Fabrication of colloidal self-assembled monolayer (SAM) using monodisperse silica and its use as a lithographic mask’’, Thin Solid Films, 447-448, 638 (2004).
[65] R. Micheletto, H. Fukuda, and M. Ohtsu, ‘‘A simple method for the production of a two-dimensional, ordered array of small latex particles’’, Langmuir, 11, 3333 (1995)
[66] F. Burnmeister, W. Badowsky, T. Braun, S. Weiprich, J. Boneberg, and P. Leiderer, ‘‘Colloid monolayer lithography-A flexible approach for nanostructuring of surfaces’’, Appl. Surf. Sci., 144-145, 461 (1999)
[67] J. Rybczynski, U. Ebels, and M. Giersig, ‘‘Large-scale, 2D arrays of magnetic nanoparticles’’, Colloids and Surfaces A, 219, 1 (2003)
[68] M. Marquez and B. P. Grady, ‘‘The use of surface tension to predict the formation of 2D arrays of latex spheres formed via the Langmuir−Blodgett-Like technique’’, Langmuir, 20, 10998 (2004)
[69] C. L. Haynes and R. P. Van Duyne, ‘‘Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics’’, J. Phys. Chem. B, 105, 5599 (2001)
[70] Z. P. Huang, D. L. Carnahan, J. Rybczynski, M. Giersig, M. Sennett, D. Z. Wang, J. G. Wen, K. Kempa, and Z. F. Ren., ‘‘Growth of large periodic arrays of carbon nanotubes’’, Appl. Phys. Lett., 82, 460 (2003)
[71] K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren, ‘‘Photonic crystals based on periodic arrays of aligned carbon nanotubes ’’, Nano Lett., 3, 13 (2003)
[72] J. Rybczynski, K. Kempa, Y. Wang, Z. F. Ren, J. B. Carlson, B. R. Kimball, and G. Benham, ‘‘Visible light diffraction studies on periodically aligned arrays of carbon nanotubes: Experimental and theoretical comparison’’, Appl. Phys. Lett., 88, 203122 (2006)
[73] X. Wang, C. J. Summers, and Z. L. Wang, ‘‘Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays ’’, Nano Lett., 4, 423 (2004)
[74] S. M. Weekes, F. Y. Ogrin, and W. A. Murray, ‘‘Fabrication of large-area ferromagnetic arrays using etched nanosphere lithography ’’, Langmuir, 20, 11208 (2004)
[75] Y. Wang, J. Rybczynski, D. Z. Wang and Z. F. Ren, ‘‘Large-scale triangular lattice arrays of sub-micron islands by microsphere self-assembly’’, Nanotechnology, 16, 819 (2005)
[76] Y. Wang, X. Wang, J. Rybczynski, D. Z. Wang, K. Kempa, and Z. F. Ren, ‘‘Triangular lattice of carbon nanotube arrays for negative index of refraction and subwavelength lensing effect’’, Appl. Phys. Lett., 86, 153120 (2005)
[77] C.-C. Kei, T.-H. Chen, C.-M. Chang, C.-Y. Su, C.-T. Lee, C.-N. Hsiao, S.-C. Chang and T.-P. Perng, ‘‘Preparation of periodic arrays of metallic nanocrystals by using nanohoneycomb as reaction vessel ’’, Chem. Mater., 19, 5833 (2007)
[78] G. Gruner, “Carbon nanotube films for transparent and plastic electronics”, J. Mater. Chem., 16, 3533 (2006)
[79] M. W. Rowell, M. A. Topinka, M. D. McGehee, H.-J. Prall, G. Dennler, N. S. Sariciftci, L. Hu and G. Gruner, “Organic solar cells with carbon nanotube network electrodes”, Appl. Phys. Lett., 88, 233506 (2006)
[80] Q. Cao, Z.-T. Zhu, M. G. Lemaitre, M.-G. Xia, M. Shim, and J. A. Rogers, ‘‘Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes’’, Appl. Phys. Lett., 88, 113511 (2006)
[81] E. S. Snow, J. P. Novak, P. M. Campbell, and D. Park, ‘‘Random networks of carbon nanotubes as an electronic material’’, Appl. Phys. Lett., 82, 2145 (2003)
[82] E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, and G. Gru1ner, “Transparent and flexible carbon nanotube transistors ”, Nano Lett., 5, 757 (2005)
[83] N. Chimot, V. Derycke, M. F. Goffman, J. P. Bourgoin, H. Happy and G. Dambrine, “Gigahertz frequency flexible carbon nanotube transistors”, Appl. Phys. Lett., 91, 153111 (2007)
[84] A. Schindler, J. Brill, N. Fruehauf, J. P. Novak, Z. Yaniv, “Solution-deposited carbon nanotube layers for flexible display applications”, Physica E, 37, 119 (2007)
[85] O.-J. Lee and K.-H. Lee, “Fabrication of flexible field emitter arrays of carbon nanotubes using self-assembly monolayers”, Appl. Phys. Lett., 82, 3770 (2003)
[86] S. Hofmann, C. Ducati, B. Kleinsorge, and J. Robertson, “Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates”, Appl. Phys. Lett., 83, 4661 (2003)
[87] H. S. Sim, S. P. Lau, H. Y. Yang, L. K. Ang, M. Tanemura and K. Yamaguchi, “Reliable and flexible carbon-nanofiber-based all-plastic field emission devices”, Appl. Phys. Lett., 90, 143103 (2007)
[88] C. Y. Wang, T. H. Chen, S. C. Chang, T. S. Chin and S. Y. Cheng, “Flexible field emitter made of carbon nanotubes microwave welded onto polymer substrates ”, Appl. Phys. Lett., 90, 103111 (2007)
[89] A. Cao, P. L. Dickrell, W. G. Sawyer, M. N. Ghasemi-Nejhad, P. M. Ajayan, “Super-compressible foamlike carbon nanotube films”, Science, 310, 1307 (2005)
[90] V. L. Pushparaj, M. M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R. J. Linhardt, O. Nalamasu, and P. M. Ajayan, “Flexible energy storage devices based on nanocomposite paper”, PNAS, 104, 13574 (2007)
[91] J. Chen, Y. Liu, A. I. Minett, C. Lynam, J. Wang, and G. G. Wallace, “Flexible, aligned carbon nanotube/conducting polymer electrodes for a Lithium-Ion battery”, Chem. Mater., 19, 3595 (2007)
[92] A. Modi, N. Koratkar, E. Lass, B. Wei and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes”, Nature, 424, 171 (2003)
[93] Y. Awano, “Carbon nanotube technologies for LSI via interconnects”, IEICE TRANS. ELECTRON., E-89C, 1499 (2006)
[94] Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, ‘‘Experimental observation of an extremely dark material made by a low-density nanotube array’’, Nano Lett., 8, 446 (2008)
[95] Hutley, Michael, “Diffraction Gratings”, London, New York (1982)
[96] W. Luck, M. Klier, and H. Wesslau, Ber. Bunsenges, ‘‘Über Bragg-Reflexe mit sichtbarem Licht an monodispersen Kunststofflatices I & II’’, Phys. Chem., 67, 75 (1963)
[97] I. M. Krieger, and F. M. O'Neill, ‘‘Diffraction of light by arrays of colloidal spheres’’, J. Am. Chem. Soc., 90, 3114 (1968)
[98] R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey and J. Chen, ‘‘Continuous production of aligned carbon nanotubes: a step closer to commercial realization’’, Chem. Phys. Lett., 303, 467 (1999)
[99] C. C. Chiu, T. Y. Tsai, and N. H. Tai, ‘‘Field emission properties of carbon nanotube arrays through the pattern transfer process’’, Nanotechnology, 17, 2840 (2006)
[100]C. C. Chiu, M. Yoshimura, and K. Ueda, ‘‘Regrowth of carbon nanotube array by microwave plasma- enhanced thermal chemical vapor deposition’’, Jpn. J. Appl. Phys., 47, 1952 (2008)