簡易檢索 / 詳目顯示

研究生: 姚月雲
Yao, Yueh-Yun
論文名稱: 奈米晶體在太陽能電池及生醫領域的應用
The application of nanocrystals in solar cells and biomedical field
指導教授: 凌永健
Ling, Yong-Chien
口試委員: 黃賢達
Huang, Shang-Da
朱立岡
Chu, Li-Kang
張家耀
Chang, Jia-Yaw
杜敬民
Duh, Jing-Min
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 184
中文關鍵詞: 染料敏化太陽能電池碳量子點核磁共振顯影光熱治療
外文關鍵詞: Dye-sensitized solar cell, Carbon Dots, Magnetic Resonance Imaging, Photothermal therapy
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量子點為奈米晶體之一,因可調控的尺寸及光學性質,已廣泛應用於多項領域,但因生物毒性和生物相容性之故,遲遲無法應用於生醫界。

    要克服這樣的阻礙,我們首先透過轉質方式合成了水相的CuInS2/ZnS 量子點,因為水相的CuInS2/ZnS 量子點,和油相CuInS2/ZnS 量子點相比,擁有較高的生物相容性。在相轉換的過程中,以此方法製備的量子點非但產量偏低,且極速衰減,迫使我們繼續尋找其他製備的方法和原料。

    在第二個部分,我們合成具有磁性螢光量子點,以Gd3+, Mn2+, Eu3+,三種不同的過渡金屬離子和葉酸結合作為標的分子,並檢驗它應用在生物成像和藥物遞送的成效。為了符合綠色化學的準則,我們選用廢棄的螃蟹殼作為碳的來源。產物的品質以及其應用結果是令人滿意的,因為MFCQD顯示出它沒有毒性且有做為顯影劑的潛力。

    在第三個部分中,我們論證了一種簡易且對環境友善的方法,可以合成gold/gadolinium-doped carbon量子點的奈米複合材料,它可以應用在核磁共振成像和光熱治療方面。這種方法很簡單,而且對摧毀癌細胞很有效,也給癌症治療一個前途有望的解決方法。

    染料敏化太陽能電池的主產物的主要障礙在於極高的製造成本,而解決方案之一為尋找足以替代高貴金屬鉑的背電極。我們挑選硒化鈷(Co0.85Se)和硒化鎳(Ni0.85Se)並研究其作為背電極之效能,最後發現硒化鈷有望替代鉑,成為背電極的候選材料。


    Quantum dot, a specific form of nanocrystal, have been applied in a wide variety of fields because of its tunable size and optical properties. A major hurdle that impedes its application in biology is toxicity and biocompatibility.

    To overcome that hurdle, we first prepared aqueous phased CuInS2/ZnS quantum dots that have higher biocompatibility from oil phased quantum dots by phase transfer. Quantum dots prepared by this method had low quantum displayed rapid decay, and the unsatisfactory result prompted us to pursue other methods.

    In the second report, we prepared magneto fluorescence carbon quantum dot with three different transition-metal ions, Gd3+, Mn2+, and Eu3+, conjugated with folic acid as a targeting molecule, and examined the effectiveness of its application in bio imaging and drug delivery. To align with the principles of green chemistry, waste crab shells were selected as a carbon source. The quality of the product and its application were satisfactory, as the MFCQD displayed no cytotoxicity and showed potential as contrast agents.

    In the third report, we demonstrated a simple and environmentally friendly method for synthesis of a gold/gadolinium-doped carbon quantum dot (Au/GdC) nanocomposite for applications in magnetic resonance imaging and photothermal ablation therapy. The simplicity of this method and its effective destruction of cancer cells show a promising strategy in cancer treatment.

    A major hurdle to mass production of DSSC is high production cost, and a likely solution to the problem is to find comparable alternatives to noble metal platinum as counter electrode. We thoroughly examined the effectiveness of cobalt selenide (Co0.85Se) and nickel selenide (Ni0.85Se), and found cobalt selenide a promising alternative to platinum as a counter electrode candidate.

    TABLE OF CONTENET CHINESE ABSTRACT………………………………………………………………….i ABSTRACT………………………………………………………………………………ii ACKNOWLEDGEMENT…………………………………………………………………..iii TABLE OF CONTENTS……………………………………………………………………..iv LIST OF FIGURE……………………………………………………………………………vi LIST OF TABLE……………………………………………………………………………xvi LIST OF SCHEME………………………………………………………………………xvii Chapter 1. INTRODUCTION ………………………...………………………………………1 1.1 Optical Properties and Theories of Nano-semiconductor Materials………………………2 1.2 Dye-Sensitized Solar Cell (DSSC)………………………………………………………..8 1.3 Application and Development of Quantum Dots………………………………………...25 1.4 The introduction and applications of magnetic QD……………………………………...42 1.5 Surface modification and functionalization of QD………………………………………46 1.6 Carbon Quantum dot (CQD)……………………………………………………………..57 1.7 References……………………………………………………………………………..…73 Chapter II: In situ fabrication of Co0.85Se and Ni0.85Se hierarchical thin films as high-performance counter electrode for dye-sensitized solar cells…………………………..83 2.1 Introduction ……………………………………………………………………………...84 2.2 Experiment ………………………………………………………………………………86 2.3 Results and discussion……………………………………………………………………87 2.4 References………………………………………………………………………………..98 Chapter III: The Application of Oil-phase CuInS2/ZnS Quantum Dot in Biomedicine through Phase Transfer…..…………………..…..…………………………...101 3.1 Introduction…………………………………………………………………………….102 3.2 Experiment……………………………………………………………………………...105 3.3 Results and discussion…………………………………………………………………..108 3.4 References………………………………………………………………………………120 Chapter IV: Magnetofluorescent Carbon Dots Derived from Crab Shell for Targeted Dual-Modality Bioimaging and Drug Delivery…………………………………………….123 4.1 Introduction……………………………………………………………………………..124 4.2 Experiment……………………………………………………………………………...126 4.3 Results and discussion…………………………………………………………………..130 4.4 References………………………………………………………………………………155 Chapter V: Facile Synthesis of a Gold/Gadolinium-doped Carbon Quantum Dot Nanocomposite for Magnetic Resonance Imaging and Photothermal Ablation Therapy…..158 5.1 Introduction……………………………………………………………………………..159 5.2 Experiment……………………………………………………………………………...161 5.3 Results and discussion……………………………………………………………….....164 5.4 References………………………………………………………………………………178 Chapter VI: Conclusion and Future Outlook……………………………………………….181 6.1 Conclusion………………………………………………………………………………182 6.2 Future Out1ooks………………………………………………………………………..184

    ch1
    [1] 羅吉宗編撰,奈米科技導論,全華圖書股份有限公司,台灣
    [2] 王慧中, 有機光電材料修飾之硒化鎘奈米粒子的合成急性質研究, 國立中央
    大學化學研究所, 碩士論文, 2004
    [3] G. Sun,The Intersubband Approach to Si-based Lasers,Advances in Lasers and Electro Optics,Nelson Costa and Adolfo Cartaxo (Ed.),2010
    [4] Zeshan Leng, Liang Huang, Feng Shao, Zhicheng Lv, Tingting Li, Xiaoxu Gu, Heyou Han, Materials Letters, 2014, 119, 100
    [5] X. Peng, L. Manna, W. Yang, J. Wickham, E. C. Scher, A. Kadavanich and A. P. Alivisatos, Nature, 2000, 404, 59
    [6] W. C. W. Chan, S. Nie, Science, 1998, 281, 2016
    [7] X. Peng, L. Manna, W. Yang, J. Wickham, E. C. Scher, A. Kadavanich and A. P. Alivisatos, Nature, 2000, 404, 59
    [8] W. Shockley and H. J. Queisser, J. Appl. Phys., 1961, 32, 510.
    [9] J. Moser, Chem., 1887, 373.
    [10] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature, 1976,261,402.
    [11] B. O’Regan and M. Grätzel, Nature, 1991, 353, 737.
    [12] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska,
    S. Ito, B. Takeru and M. Grätzel, J. Am. Chem. Soc., 2005, 127, 16835.
    [13] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Grätzel, Science, 2011, 334, 629.
    [14] F. T. Kong, S. Y. Dai and K. J. Wang, Adv. Optoelectron., 2007, 1.
    [15] M. Grätzel, Inorg. Chem., 2005, 44 , 6841.
    [16] 孟慶波, 林原, 戴松元, 物理, 2004, 33, 177。
    [17] D. Ulrike, Surf. Sci. Rep., 2003, 48, 53.
    [18] D. Reyes-Coronado, G. Rodríguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R.d. Coss and G. Oskam, Nanotechnology, 2008, 19, 145605.
    [19] Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet,P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno and M. Grätzel, ZPC, 2007, 221, 319.
    [20] Y. Xu and M. A. A. Schoonen, AmMin, 2000, 85, 543.
    [21] S.-W. Rhee and W. Kwon, Korean J. Chem. Eng., 2011, 28, 1481.
    [22] G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, Sol. Energy Mater. Sol. Cells, 2001, 70, 85.
    [23] Y.-S. Yen, et al. J. Mater. Chem., 2012, 8734.
    [24] M. Wu, et al. ChemSusChem, 2012, 1343.
    [25] Chen, L.; Tan, W.; Zhang, J.; Zhou, X.; Zhang, X.; Lin, Y., Electrochim. Acta, 2010, 55, 3721.
    [26] Li, P.; Wu, J.; Lin, J.; Huang, M.; Lan, Z.; Li, Q. Electrochim. Acta, 2008, 53, 4161.
    [27] Wang, G.; Lin, R.; Lin, Y.; Li, X.; Zhou, X.; Xiao, X., Electrochim. Acta, 2005,50, 5546.
    [28] Ikegami, M.; Miyoshi, K.; Miyasaka, T.; Teshima, K.; Wei, T. C.;Wan, C. C.; Wang, Y. Y., Appl. Phys. Lett., 2007, 90, 122.
    [29] Olsen, E.; Hagen, G.; Lindquist, S.-E., Sol. Energy Mater. Sol. Cells, 2000, 63, 267.
    [30] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida and E. Abe, J. Electroanal. Chem., 2004, 570, 257.
    [31] Pan, S.; Yang, Z.; Li, H.; Qiu, L.; Sun, H.; Peng, H., J. Am. Chem. Soc., 2013, 135, 10622.
    [32] Levy, R. B.; Boudart, M., Science, 1973, 181, 547.
    [33] Oyama, S. T., Catal. Today, 1992, 15, 179.
    [34] Wu, M.; Lin, X.; Hagfeldt, A.; Ma, T., Angew. Chem., Int. Ed., 2011, 50, 3520.
    [35] Wu, M.; Lin, X.; Wang, Y.; Wang, L.; Guo, W.; Qi, D.; Peng, X.;Hagfeldt, A.; Grätzel, M.; Ma, T., J. Am. Chem. Soc., 2012, 134, 3419.
    [36] Yun, S.; Wang, L.; Zhao, C.; Wang, Y.; Ma, T., Phys. Chem. Chem. Phys., 2013,28, 4286.
    [37] Yun, S.; Wu, M.; Wang, Y.; Shi, J.; Lin, X.; Hagfeldt, A.; Ma, T., Chem Sus Chem, 2013, 6, 411.
    [38] Q. W. Jiang , G. R. Li , S. Liu and X. P. Gao, J. Phys. Chem. C, 2010, 114, 13397.
    [39] Hou, Y.; Chen, Z.; Wang, D.; Zhang, B.; Yang, S.; Wang, H.;Hu, P.; Zhao, H.; Yang, H., Small, 2013, 10, 484.
    [40] Wang, M.; Anghel, A.; Marsan, B.; Ha, N. C.; Pootrakulchote,N.; Zakeeruddin, S. M.; Grätzel, M., J. Am. Chem. Soc., 2009, 131, 15976.
    [41] Chang, S.-H.; Lu, M.-D.; Tung, Y.-L.; Tuan, H.-Y., ACS Nano, 2013, 7, 9443.
    [42] Kung, C.-W.; Chen, H.-W.; Lin, C.-Y.; Huang, K.-C.; Vittal, R.; Ho, K.-C., ACS Nano, 2012, 6, 7016.
    [43] Sun, H.; Qin, D.; Huang, S.; Guo, X.; Li, D.; Luo, Y.; Meng, Q., Energy Environ. Sci., 2011, 4, 2630.
    [44] Zhao, W.; Zhu, X.; Bi, H.; Cui, H.; Sun, S.; Huang, F., J. Power Sources, 2013,242, 28.
    [45] Zhang, H.; Yang, L.; Liu, Z.; Zhou, Z.; Chen, W.; Li, Q.; Liu, L., J. Mater. Chem., 2012, 22, 18572.
    [46] Wang, H.-C.; Wang, D.-Y.; Jiang, Y.-T.; Chen, H.-A.; Chen, C.-C.; Ho, K.-C.; Chou, H.-L.; Chen, C.-W., Angew. Chem., Int. Ed., 2013, 52, 6694.
    [47] Huang, Q.-H.; Ling, T.; Qiao, S.-Z.; Du, X.-W., J. Mater. Chem. A, 2013, 1, 11828.
    [48] Wu, M.; Wang, Y.; Lin, X.; Yu, N.; Wang, L.; Wang, L. L.; Hagfeldt, A.; Ma, T.,Phys. Chem. Chem.Phys., 2011, 13, 19298.
    [49] Wu, M.; Bai, J.; Wang, Y.; Wang, A.; Lin, X.; Wang, L.; Shen,Y.; Wang, Z.; Hagfeldt, A.; Ma, T., J. Mater. Chem., 2012, 22, 11121.
    [50] Dou, Y.; Li, G.; Gao, X., Phys. Chem. Chem. Phys., 2012, 14, 1339.
    [51] Gong, F.; Wang, H.; Xu, X.; Zhou, G.; Wang, Z.-S., J. Am.Chem. Soc., 2012, 134, 10953.
    [52] Gong, F.; Xu, X.; Li, Z.; Zhou, G.; Wang, Z.-S., Chem. Commun., 2013, 49, 1437.
    [53] Zhang, Z.; Pang, S.; Xu, H.; Yang, Z.; Zhang, X.; Liu, Z.; Wang,X.; Zhou, X.; Dong, S.; Chen, X.; et al., RSC Adv., 2013, 3,16528.
    [54] Guo, J.; Shi, Y.; Zhu, C.; Wang, N.; Ma, T., J. Mater. Chem., 2013, 1, 11874.
    [55] Guo, J.; Shi, Y.; Chu, Y.; Ma, T., Chem. Commun., 2013, 49, 10157.
    [56] Xin, X.; He, M.; Han, W.; Jung, J.; Lin, Z., Angew. Chem., Int. Ed., 2011, 50, 11739.
    [57] Wang, J.; Xin, X.; Lin, Z., Nanoscale, 2011, 3, 2040.
    [58] Yuan, S.-J.; Zhou, Z.-J.; Hou, Z.-L.; Zhou, W.-H.; Yao, R.-Y.;Zhao, Y.; Wu, S.-X., Chem. A Eur. J., 2013, 19,10107.
    [59] Yang, J.; Bao, C.; Zhang, J.; Yu, T.; Huang, H.; Wei, Y.; Gao, H.; Fu, G.; Liu, J.; Zou, Z., Chem. Commun., 2013, 49, 2028.
    [60] Yao, R.-Y.; Zhou, Z.-J.; Hou, Z.-L.; Wang, X.; Zhou, W.-H.; Wu, S.-X., ACS Appl. Mater. Interfaces, 2013, 5, 3143.
    [61] Lin, J.-Y.; Chou, S.-W., Electrochem. Commun., 2013, 37, 11.
    [62] Zheng, X.; Guo, J.; Shi, Y.; Xiong, F.; Zhang, W.-H.; Ma, T.; Li, C., Chem. Commun., 2013, 49, 9645.
    [63] Bi, H.; Zhao, W.; Sun, S.; Cui, H.; Lin, T.; Huang, F.; Xie, X.; Jiang, M., Carbon, 2013, 61, 116.
    [64] Li, L.; Liu, Y.; Yang, N.; Tang, Z.; Zhao, H.; Ma, G.; Su, Z.;Wang, D., Energy Environ. Sci., 2013, 6, 835.
    [65] X. Peng, L. Manna, W. Yang, J. Wickham, E. C. Scher, A. Kadavanich and A. P. Alivisatos, Nature, 2000, 404, 59
    [66] W. C. W. Chan, S. Nie, Science, 1998, 281, 2016
    [67] X. Peng, L. Manna, W. Yang, J. Wickham, E. C. Scher, A. Kadavanich and A. P. Alivisatos, Nature, 2000, 404, 59
    [68] M. Hines, Guyot-Sionnest, J. Phys. Chem., 1996, 100, 468
    [69] B.O. Dabbousi , J. Rodriguez-Viejo , F. V. Mikulec , J. R. Heine , H. Mattoussi , R. Ober , K. F. Jensen , and M. G. Bawendi , J. Phys. Chem. B, 1997, 101, 9463
    [70] Shailaja Mahamuni, K. Borgohain, B. S. Bendre, Valerie J. Leppert, and Subhash H.
    Risbud, J. Appl. Phys.,1999, 85, 2861
    [71] Michal Danek , Klavs F. Jensen, Chris B. Murray, and Moungi G. Bawendi, Chem. Mater., 1996, 8 ,173
    [72] G. Karczewski, S. Maćkowski, M. Kutrowski, T. Wojtowicz and J. Kossut, Appl. Phys. Lett.,1999, 74, 3011
    [73] R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Phys. Rev. Lett., 1994, 72, 416
    [74] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G.
    Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, Science, 2005, 307, 538.
    [75] R. Xie, M. Rutherford, and X. Peng, J. Am. Chem. Soc., 2009, 131, 5691.
    [76] B.-K. Pong, B. L. Trout, and J.-Y. Lee, Langmuir, 2008, 24, 5270.
    [77] S. Gupta, P. Uhlmann, M. Agrawal, V. Lesnyak, N. Gaponik, F. Simon, M.
    Stamm and A. Eychmuller, J. Am. Chem. Soc., 2007, 129, 2871
    [78] X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung and S. Nie, Nat. Biotechnol.,
    2004, 22, 969
    [79] D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A.
    P. Alivisatos, J. Phys. Chem. B, 2001, 105, 8861.
    [80] R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D. C. Hart,
    A. van Blaaderen, D. Vanmaekelbergh and A. Meijerink, Chem. Mater., 2008,
    20, 2503
    [81] M. Z. Fahmi and J.-Y. Chang, Nanoscale, 2013, 5, 1517-1528.
    [82] P. M. Allen and M. G. Bawendi, J. Am. Chem. Soc., 2008, 130, 9240.
    [83] R. G. Xie, M. Rutherford and X. G. Peng, J. Am. Chem. Soc.,2009, 131, 5691
    [84] J. Park and S. W. Kim, J. Mater. Chem., 2011, 21, 3745
    [85] J. Y. Chang, G. Q. Wang, C. Y. Cheng, W. X. Lin and J. C. Hsu, J. Mater. Chem., 2012, 22, 10609
    [86] B. K. Chen, H. Z. Zhong and B. S. Zou, Prog. Chem., 2011, 23, 2276.
    [87] X. Yuan, J. L. Zhao, P. T. Jing, W. J. Zhang, H. B. Li, L. G. Zhang, X. H.
    [88] X. L. Wang, D. C. Pan, D. Weng, C. Y. Low, L. Rice, J. Y. Han and Y. F. Lu, J. Phys. Chem. C, 2010, 114, 17293
    [89] D. C. Pan, X. L. Wang, Z. H. Zhou, W. Chen, C. L. Xu and Y. F. Lu, Chem. Mater., 2009, 21, 2489
    [90] P. C. Dai, X. N. Shen, Z. J. Lin, Z. Y. Feng, H. Xu and J. H. Zhan, Chem. Commun., 2010, 46, 5749
    [91] Q. H. Liu, Z. C. Zhao, Y. H. Lin, P. Guo, S. J. Li, D. C. Pan and X. L. Ji, Chem. Commun., 2011, 47, 964
    [92] K. T. Yong, I. Roy, R. Hu, H. Ding, H. X. Cai, J. Zhu, X. H. Zhang, E. J. Bergey and P. N. Prasad, Integr. Biol., 2010, 2, 121
    [93] T. Pons, E. Pic, N. Lequeux, E. Cassette, L. Bezdetnaya, F. Guillemin, F.Marchal and B. Dubertret, ACS Nano, 2010, 4, 2531
    [94] Wenjin Zhang, Qing Lou, Wenyu Ji, Jialong Zhao, and Xinhua Zhong, Chem. Mater., 2014, 26, 1204
    [95] H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki and H. Maeda, Chem. Mater., 2006, 18, 3330
    [96] Z. Feng, P. Dai, X. Ma, J. Zhan, Z. Lin, Appl. Phys. Lett., 2010, 96, 013104
    [97] W. Zhang and X. Zhong, Inorg. Chem., 2011, 50, 4065
    [98] Wenjin Zhang, Qing Lou, Wenyu Ji, Jialong Zhao, and Xinhua Zhong, Chem. Mater., 2014, 26, 1204
    [99] Haizheng Zhong, Zelong Bai, and Bingsuo Zou, J. Phys. Chem. Lett., 2012, 3, 3167
    [100] T. Omata, K. Nose, and S. Otsuka-Yao-Matsuo, J. Appl. Phys., 2009, 105, 73106
    [101] W. J. Parak, R. Boudreau, M. L. Gros, D. Gerion, D. Zanchet, C. M. Micheel, S. C.
    Williams, A. P. Alivisatos and C. Larabell, Adv. Mater., 2002, 14, 882
    [102] Ki Su Kim, Wonhee Hur, Sang-Jun Park, Sung Woo Hong, Jung Eun Choi, Eun
    Ji Goh, Seung Kew Yoon, and Sei Kwang Hahn†, ACS Nano, 2010, 4, 3005
    [103] Chun-Lin Huang, Chih-Ching Huang, Fu-Der Mai, Chia-Liang, Yen,Shin-Hwa
    Tzing, Hsiao-Ting Hsieh, Yong-Chien Lingd and Jia-Yaw Chang, J. Mater.
    Chem. B, 2015, 3, 65
    [104] D. J. Bharali, D. W. Lucey, H. Jayakumar, H. E. Pudavar, and P. N. Prasad, J.
    Am. Chem. Soc., 2005, 127, 11364
    [105] K. D,Mielenz. Optical Radiation Measurements, New York, Academic
    Press,1982
    [106] A. Liu, S. Peng, J. C. Soo, M. Kuang, P. Chen, and H. Duan, Analytical Chemistry,
    2011, 83, 1124
    [107] W. Zhang, X. W. He, Y. Q. Yang, W.Y. Li and Y. K Zhang, J. Mater. Chem. B, 2013,
    1, 347
    [108] W. T. Wu, T. Zhou, A. Berliner, P. Banerjee and S. Q. Zhou, Angew. Chem. Int.
    Ed., 2010, 49, 1
    [109] Q. Ma, E. Ha, F. P. Yang and X. G. Su, Anal. Chim. Acta, 2011, 701, 60
    [110] Y. Gao, H. Huang, J. J. Hu, S. M. Shah and X. G. Su, Talanta,2011, 85, 1075
    [111] S. Liu, F. Shi, L. Chen and X. Su, Analyst, 2013, 138, 5819
    [112] S. Liu, F. Shi, L. Chen and X. Su, Talanta, 2013, 116, 870
    [113] P. O. Anikeeva, J. E. Halpert, M. G. Bawendi and V. Bulović, Nano Letters,
    2009, 9, 2532
    [114] http://www.qled-info.com/introduction/, 2014/4/23
    [115] Han MY, Gao X, Su JZ, Nie SM, Nat Biotechnol, 2001, 19, 631
    [116] Yanlan Liu, Kelong Ai a, Qinghai Yuan, Lehui Lu, Biomaterials, 2011, 32, 1185
    [117] Weisheng Guo, Weitao Yang, Yu Wang, Xiaolian Sun, Zhongyun Liu, Bingbo
    Zhang, Jin Chang, and Xiaoyuan Chen, Nano, 2013, 7, 1581
    [118] LIU Yang2, LI Dongze, ZHANG Ying, LIU Zhihui and XIE Renguo, Chem.
    Res., 2015, 31, 1
    [119] Fei Zhang, Ting-Ting Sun, Yan Zhang, Qiong Li, Chao Chai, Li Lu, Wen Shen,
    Jun Yang, Xi-Wen He, Yu-Kui Zhangad and Wen-You Li, J. Mater. Chem. B,
    2014, 2, 7201
    [120] Yang Xu, Xiao-Hua Jia, Xue-Bo Yin, Xi-Wen He, and Yu-Kui Zhang, Anal.
    Chem., 2014, 86, 12122
    [121] J. Cheno, and J. Lee, Acc. Chem. Res., 2008, 41, 1630
    [122] F. Zhang, E. Lees, F. Amin, P. Rivera_Gil, F. Yang, P. Mulvaney and W. J. Parak,
    Small, 2011, 7, 3113.
    [123] W. C. W. Chan, S. Nie, Science, 1998, 281, 2016.
    [124] D. M. Willard, L. L. Carillo, J. Jung, A. V. Orden, Nano Lett., 2001, 1,469.
    [125] . G. P. Mitchell, C. A. Mirkin, R. L. Letsinger, J. Am. Chem. Soc., 1999, 121, 8122.
    [126] A. Hoshino, K. Fujioka, T. Oku, S. Nakamura, M. Suga, Y. Yamaguchi, K.
    Suzuki, M. Yasuhara, K. Yamamoto, Microbiol. Immunol., 2004 , 48 , 985.
    [127] J. Aldana , Y. A. Wang , X. Peng , J. Am. Chem. Soc., 2001, 123, 8844.
    [128] W. Jiang, S. Mardyani, H. Fischer, W. C. W. Chan, Chem. Mater., 2006, 18, 872.
    [129] E. R. Goldman, E. D. Balighian, H. Mattoussi, M. K. Kuno, J. M. Mauro, P. T.
    Tran, G. P. Anderson, J. Am. Chem. Soc., 2002, 124, 6378.
    [130] F. Dubois , B. Mahler, B. Dubertret, E. Doris, C. Mioskowski, J. Am. Chem. Soc.,
    2007, 129, 482.
    [131] Y. C. Liu , M. Kim, Y. J. Wang, Y. A. Wang, X. G. Peng, Langmuir, 2006, 22, 6341.
    [132] W. H. Guo , J. J. Li, Y. A. Wang, X. Peng, J. Am. Chem. Soc., 2003, 125, 3901.
    [133] H. T. Uyeda , I. L. Medintz, J. K. Jaiswal, S. Simon, H. Mattoussi, J. Am. Chem. Soc.,
    2005, 127, 3870.
    [134] K. Susumu, H. T. Uyeda, I. L. Medintz, T. Pons, J. B. Delehanty, H. Mattoussi,
    J. Am. Chem. Soc., 2007, 129, 13987.
    [135] F. Pinaud, D. King, H.-P. Moore, S. Weiss, J. Am. Chem. Soc., 2004, 126, 6115.
    [136] S. Kim, M. G. Bawendi, J. Am. Chem. Soc., 2003, 125, 14652.
    [137] R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D. C. Hart, A.
    van Blaaderen, D. Vanmaekelbergh and A. Meijerink, Chem. Mater., 2008,
    20, 2503.
    [138] H. Fan , E. W. Leve, C. Scullin, J. Gabaldon, D. Tallant, S. Bunge, T. Boyle, M. C.
    Wilson, C. J. Brinker, Nano Lett., 2005, 5, 645.
    [139] B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, A.
    Libchaber, Science, 2002 , 298, 1759.
    [140] M. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge,
    F. Peale, M. P. Bruchez, Nat. Biotechnol., 2003, 21, 41.
    [141] Petruska, M. A.; Bartko, A. P.; Klimov, J. Am. Chem. Soc., 2004, 126, 714.
    [142] Chen, Y.; Thakar, R.; Snee, J. Am. Chem. Soc., 2008, 130, 3744.
    [143] T. Pellegrino , L. Manna, S. Kudera, T. Liedl, T. Koktysh, A. L. Rogach, S.
    Keller, J. Rädler, G. Natile, W. J. Parak, Nano Lett., 2004, 4, 703.
    [144] Lees E E, Nguyen T L, Clayton A H A, Mulvaney P., ACS Nano, 2009, 3(5), 1121.
    [145] W. W. Yu, E. Chang, J. C. Falkner, J. Zhang, A. M. Al-Somali, C. M. Sayes, J.
    Johns, R. Drezek, V. L.Colvin, J. Am. Chem. Soc., 2007, 129, 2871.
    [146] Z. D. Qi, D. W. Li, P. Jiang, F. L. Jiang, Y. S. Li, Y. Liu, W. K. Wong, K. W.
    Cheah, J. Mater. Chem., 2011, 21, 2455
    [147] D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, A. P.
    Alivisatos, J. Phys. Chem. B, 2001, 105, 8861.
    [148] S. T. Selvan, P. K. Patra, C. Y. Ang, J. Y. Ying, Angew. Chem. Int. Ed., 2007, 46,
    2448.
    [149] T. Mokari, H. Sertchook, A. Aharoni, Y. Ebenstein, D. Avnir, and U. Banin,
    Chem. Mater., 2005, 17, 258.
    [150] T. Li, J. Moon, A. A. Morrone, J. J. Mecholsky, D. R. Talham, and J. H. Adair,
    Langmuir, 1999, 15, 4328.
    [151] D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y.
    Ying, J. Am. Chem. Soc., 2005, 127, 4990.
    [152] T. Mokari, H. Sertchook, A. Aharoni, Y. Ebenstein, D. Avnir, and U. Banin, Chem.
    Mater., 2005, 17, 258.
    [153] A. V. Blaaderen, and A. Vrij, Langmuir, 1992, 8, 2921.
    [154] S. T. Selvan, Tan, T. T., Ying, and J. Y., Adv. Mater., 2005, 17, 1620.
    [155] Y. H. Yang, L. H. Jing, X. L. Yu, D. D. Yan, and M. Y. Gao, Chem. Mater., 2007, 19,
    123.
    [156] X. Y. Xu, R. Ray, Y. L. Gu, H. J. Ploehn, L. Gearheart, K. Raker and W. A. Scrivens,
    J. Am. Chem. Soc., 2004, 126, 12736.
    [157] Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani,
    B. A. Harruff, X. Wang, H. F. Wang, P. G. Luo, H. Yang, M. E. Kose, B. L. Chen, L.
    M. Veca and S.-Y. Xie, J. Am. Chem. Soc., 2006, 128, 7756.
    [158] Y. Wang, A. Hu, J. Mater. Chem. C, 2014, 2, 6921
    [159] S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen and Y. C. Yu, J. Am. Chem. Soc.,
    2005, 127, 17604.
    [160] J. G. Zhou, C. Booker, R. Y. Li, X. T. Zhou, T.-K. Sham, X. L. Sun and Z. F. Ding, J.
    Am. Chem. Soc., 2007, 129, 744.
    [161] Y. Q. Dong, N. N. Zhou, X. M. Lin, J. P. Lin, Y. W. Chi and G. N. Chen, Chem.
    Mater., 2010, 22, 5895.
    [162] Q. L. Wang, H. Z. Zheng, Y. J. Long, L. Y. Zhang, M. Gao and W. J. Bai,
    Carbon, 2011, 49, 3134.
    [163] S.-L. Hu, K.-Y. Niu, J. Sun, J. Yang, N.-Q. Zhao and X.-W. Du, J. Mater.
    Chem., 2009, 19, 484.
    [164] A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, V. Georgakilas and E. P.
    Giannelis, Chem. Mater., 2008, 20, 4539.
    [165] R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll and Q. Li, Angew. Chem., Int. Ed.,
    2009, 48, 4598.
    [166] J. Zong, Y. Zhu, X. Yang, J. Shen and C. Li, Chem. Commun., 2011, 47, 764.
    [167] B. Chen, F. Li, S. Li, W. Weng, H. Guo, T. Guo, X. Zhang, Y. Chen, T. Huang,
    X. Hong, S. You, Y. Lin, K. Zeng and S. Chen, Nanoscale, 2013, 5, 1967.
    [168] S. K. Bhunia, A. Saha, A. R. Maity, S. C. Ray and N. R. Jana, Sci. Rep., 2013, 3, 473.
    [169] H. Nie, M. Li, Q. Li, S. Liang, Y. Tan, L. Sheng, W. Shi and S. X. Zhang,
    Chem. Mater., 2014, 26, 3104.
    [170] Z. C. Yang, M. Wang, A. M. Yong, S. Y. Wong, X. H. Zhang, H. Tan, A. Y.
    Chang, X. Li and J. Wang, Chem. Commun., 2011, 47, 11615.
    [171] H. Wu, C. Mi, H. Huang, B. Han, J. Li, S. Xu, J. Lumin., 2012, 132, 1603.
    [172] Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang and Y. Liu, Chem.
    Commun., 2012, 48, 380.
    [173] Y. Guo, Z. Wang, H. Shao, X. Jiang, Carbon, 2013, 52, 583.
    [174] S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang
    and B. Yang, Angew. Chem. Int. Ed., 2013, 52, 3953.
    [175] R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge and J. Rousell,  
    Tetrahedron Lett., 1986, 27, 279.
    [176] A. de la Hoz, A. Díaz-Ortiz and A. Moreno, Chem. Soc. Rev., 2005, 34, 164.
    [177] S. Qu, X. Wang, Q. Lu, X. Liu and L. Wang, Angew. Chem. Int. Ed., 2012, 51, 12215.
    [178] A. Jaiswal, S. S. Ghosh and A. Chattopadhyay, Chem. Commun., 2012, 48, 407.
    [179] X. Qin, W. Lu, A. M. Asiri, A. O. Al-Youbi and X. Sun, Sensor. Actuat. B-Chem.,
    2013, 184, 156.
    [180] J. Jiang, Y. He, S. Li and H. Cui, Chem. Commun., 2012, 48, 9634.
    [181] H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. A. Tsang, X. Yang
    and S.-T. Lee, Angew. Chem. Int. Ed., 2010, 49, 4430.
    [182] L. Cao, X. Wang, M. J. Meziani, F. S. Lu, H. F. Wang, P. J. G. Luo, Y. Lin, B. A.
    Harruff, L. M. Veca, D. Murray, S. Y. Xie and Y. P. Sun, J. Am. Chem. Soc., 2007,
    129, 11318.
    [183] Y. Wang, L. Dong, R. Xiong and A. Hu, J. Mater. Chem. C, 2013, 1, 7731.
    [184] H. Liu, T. Ye and C. Mao, Angew. Chem. Int. Ed., 2007, 46, 6473.
    [185] X. Jia, J. Lia and E. Wang, Nanoscale, 2012, 4, 5572.
    [186] W. Zhao, C. Song and P. E. Pehrsson, J. Am. Chem. Soc., 2002, 124, 12418.
    [187] X. Dong, Y. Su, H. Geng, Z. Li, C. Yang, X. Li and Y. Zhang, J. Mater. Chem. C,
    2014, 2, 7477.
    [188] Y. Deng, D. Zhao, X. Chen, F. Wang, H. Songa and D. Shen, Chem. Commun.,
    2013, 49, 5751.
    [189] J. H. Shen, Y. H. Zhu, C. Chen, X. L. Yang and C. Z. Li, Chem. Commun.,
    2011, 47, 2580.
    [190] S. J. Zhu, J. H. Zhang, X. Liu, B. Li, X. F. Wang, S. J. Tang, Q. N. Meng, Y. F.
    Li, C. Shi, R. Hu and B. Yang, RSC Adv., 2012, 2, 2717.
    [191] C. F. Wang, X. Wu, X. P. Li, W. T. Wang, L. Z. Wang, M. Gu and Q. Li, J.
    Mater. Chem., 2012, 22, 15522.
    [192] A. Mewada, S. Pandey, M. Thakur, D. Jadhav and M. Sharon, J. Mater. Chem.
    B, 2014, 2, 698.
    [193] A. K. Samantara, S. Maji, A. Ghosh, B. Bag, R. Dash and B. K. Jena, J. Mater.
    Chem. B, 2016, 4, 2412.

    ch2
    2.4 REFERENCE
    [1] B. Oregan, M. Gratzel, Nature ,1991, 353 , 737.
    [2] A. Hagfeldt, G. Boschloo, L.C. Sun, L. Kloo, H. Pettersson, Chem. Rev., 2010, 110, 6595.
    [3] M.X. Wu, T.L. Ma, J. Phys. Chem. C, 2014, 118, 16727.
    [4] S.W. Pan, Z.B. Yang, H.P. Li, L.B. Qiu, H. Sun, H.S. Peng, , J. Am. Chem. Soc., 2013, 135, 10622.
    [5] J. Han, H. Kim, D.Y. Kim, S.M. Jo, S.Y. Jang, ACS Nano,2010, 4, 3503.
    [6] C.L. Wang, F.N. Meng, M.X. Wu, X. Lin, T.H. Wang, J.S. Qiu, T.L. Ma, Phys. Chem.
    Chem. Phys, 2013, 15, 14182.
    [7] G. De Filpo, F.P. Nicoletta, L. Ciliberti, P. Formoso, G. Chidichimo, J. Power Sources,
    2015, 274 , 274.
    [8] Susmitha, K., Kumari, M.M., Berkmans, A.J., Kumar, M.N., Giribabu, L., Manorama,
    S.V., Raghavender, M., 2016. Sol. Energy, 2016, 133, 524
    [9] Q.D. Tai, B.L. Chen, F. Guo, S. Xu, H. Hu, B. Sebo, X.Z. Zhao, ACS Nano, 2011, 5,
    3795.
    [10] J.H. Wu, Y. Li, Q.W. Tang, G.T. Yue, J.M. Lin, M.L. Huang, L.J. Meng, Sci.
    Rep.,2014, 4.
    [11] J. Xu, M.X. Li, L. Wu, Y.Y. Sun, L.G. Zhu, S.J. Gu, L. Liu, Z.K. Bai, D. Fang, W.L.
    Xu, J. Power Sources, 2014, 257, 230
    [12] Q.H. Li, J.H. Wu, Q.W. Tang, Z. Lan, P.J. Li, J.M. Lin, L.Q. Fan, Electrochem.
    Commun., 2008, 10, 1299
    [13] J.H. Wu, Q.H. Li, L.Q. Fan, Z. Lan, P.J. Li, J.M. Lin, S.C. Hao, J. Power Sources, 2008,
    181, 172.
    [14] G.R. Li, J. Song, G.L. Pan, X.P. Gao, Energ. Environ. Sci., 2011, 4, 1680
    [15] M.X. Wu, X. Lin, Y.D. Wang, L. Wang, W. Guo, D.D. Qu, X.J. Peng, A. Hagfeldt, M.
    Gratzel, T.L. Ma, J. Am. Chem. Soc., 2012, 134, 3419.
    [16] M.X. Wu, H.Y. Guo, Y.N. Lin, K.Z. Wu, T.L. Ma, A. Hagfeldt, S, J. Phys. Chem. C,
    2014, 118, 12625
    [17] Q.W. Jiang, G.R. Li, X.P. Gao, Chem. Commun., 2009, 6720
    [18] Y.P. Liao, K. Pan, L. Wang, Q.J. Pan, W. Zhou, X.H. Miao, B.J. Jiang, C.G. Tian, G.H.
    Tian, G.F. Wang, H.G. Fu, ACS Appl. Mater. Inter., 2013, 5, 3663
    [19] S.N. Yun, L. Wang, C.Y. Zhao, Y.X. Wang, T.L. Ma, Phys. Chem. Chem. Phys., 2013,
    15, 4286.
    [20] M.K. Wang, A.M. Anghel, B. Marsan, N.L.C. Ha, N. Pootrakulchote, S.M. Zakeeruddin,
    M. Gratzel, J. Am. Chem. Soc., 2009, 131, 15976.
    [21] Z.L. Ku, X. Li, G.H. Liu, H. Wang, Y.G. Rong, M. Xu, L.F. Liu, M. Hu, Y. Yang, H.W.
    Han, J. Mater. Chem. A, 2013, 1, 237
    [22] C.W. Kung, H.W. Chen, C.Y. Lin, K.C. Huang, R. Vittal, K.C. Ho, ACS Nano, 2012, 6 7016.
    [23] X.K. Xin, M. He, W. Han, J.H. Jung, Z.Q. Lin, Angew. Chem. Int. Edit., 2011, 50,
    11739
    [24] H.C. Sun, D. Qin, S.Q. Huang, X.Z. Guo, D.M. Li, Y.H. Luo, Q.B. Meng, Energ.
    Environ. Sci., 2011, 4, 2630.
    [25] M.X. Wu, Y.D. Wang, X. Lin, N.S. Yu, L. Wang, L.L. Wang, A. Hagfeldt, T.L. Ma,
    Phys. Chem. Chem. Phys., 2011, 13, 19298
    [26] J.B. Jia, J.H. Wu, Y.G. Tu, J.H. Huo, M. Zheng, J.M. Lin, J. Alloy Compd., 2015, 640,
    29
    [27] Z.Y. Zhang, S.P. Pang, H.X. Xu, Z.Z. Yang, X.Y. Zhang, Z.H. Liu, X.G. Wang, X.H.
    Zhou, S.M. Dong, X. Chen, L. Gu, G.L. Cui, RSC Adv.,2013, 3, 16528
    [28] J.H. Guo, Y.T. Shi, Y.T. Chu, T.L. Ma, Chem. Commun., 2013, 49, 10157
    [29] Song, C., Wang, S., Dong, W., Fang, X., Shao, J., Zhu J., Pan, X.,Sol. Energy, 2016,133,
    429
    [30] Dong, J., Wu, J., Jia, J., Hu, L., Dai, S., Sol. Energy, 2015, 122, 326
    [31] Hasin, P., Sol. Energy, 2016, 135, 398-407
    [32] Zuo, X., Yan, S., Yang, B., Li, G., Zhang, H., Tang, H., Wu, M., Ma, Y., Jin, S., Zhu,
    K., Sol. Energy, 2016, 132, 503
    [33] F. Gong, H. Wang, X. Xu, G. Zhou, Z.S. Wang, J. Am. Chem. Soc., 2012, 134, 10953
    [34] F. Gong, X. Xu, Z.Q. Li, G. Zhou, Z.S. Wang, Chem. Commun., 2013, 49,1437
    [35] L. Chen, H. Yin, Y. Zhou, H. Dai, T. Yu, J. Liu, Z. Zou, Nanoscale, 2016, 8, 2304
    [36] X. Zhang, T.Z. Jing, S.Q. Guo, G.D. Gao, L. Liu, RSC Adv.,2014, 4 , 50312
    [37] H. Sun, L. Zhang, Z.S. Wang, J. Mater. Chem. A, 2014, 2, 16023
    [38] J. Dong, J.H. Wu, J.B. Jia, S.Y. Wu, P. Zhou, Y.G. Tu, Z. Lan, Electrochim. Acta, 2015,
    168, 69
    [39] I.A. Ji, H.M. Choi, J.H. Bang, Mater. Lett., 2014, 123, 51
    [40] M.N. Nadagouda, T.F. Speth, R.S. Varma, Accounts Chem. Res., 2011, 44, 469
    [41] Chen, P.-S., Tseng, C.-M., Kuo, T.-C., Chih, C.-K., Li, M.-H., Chen, P., Sol. Energy,
    2015, 120, 345.
    [42] D.S. Kong, H.T. Wang, Z.Y. Lu, Y. Cui, J.Am. Chem. Soc., 2014, 136, 4897
    [43] Q.S. Jiang, G. Hu, Mater. Lett., 2015, 153, 114.
    [44] W.D. Shi, X. Zhang, G.B. Che, Int. J. Hydrogen Energ.,2013, 38, 7037
    [45] S.N. Yannopoulos, K.S. Andrikopoulos, , J. Chem. Phys., 2004, 121, 4747
    [46] A.I. Carim, F.H. Saadi, M.P. Soriaga, N.S. Lewis, J. Mater. Chem. A, 2014, 2,13835.
    [47] C.E.M. Campos, J.C. de Lima, T.A. Grandi, K.D. Machado, P.S. Pizani, Physica B,
    2002, 324, 409.
    [48] C. de las Heras, F. Agullo-Rueda,, J. Phys-Condens. Mat.,2000, 12, 5317

    ch3
    REFERENCES
    [1] A. L. Efros, M. Rosen, Rev. Mater. Sci. 2000, 30, 475
    [2] C. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Rev. Mater. Sci. 2000, 30, 545
    [3] M. Bruchez, M. Moronne, Gin, P.; Weiss, S. Alivisatos, A. P. Science1, 1998, 281,
    2013
    [4] W. C. Chan, S. Nie, Science, 1998, 281, 2016
    [5] M. V. Yezhelyev, A. Al-Hajj, C. Morris, A. I.Marcus, T. Liu, M. Lewis, C. Cohen, P.
    Zrazhevskiy, J. W. Simons, A. Rogatko, S. Nie, X. Gao, R. M. O’Regan, Adv.
    Mater. 2007,19, 3146
    [6] J. Liu, S. K. Lau, V. A. Varma, R. A. Moffitt, M. Caldwell, T. Liu, A. N. Young, J.
    A. Petros, A. O. Osunkoya, T. Krogstad, B. Leyland -Jones, M. D. Wang, S. Nie,
    ACS Nano 2010, 4, 2755
    [7] C. Chen, J. Peng, S.-R. Sun, C.-W. Peng, Y. Li, D.-W. Pang, Nanomedicine 2012, 7,
    411
    [8] W. Liu, M. Howarth, A. B. Greytak, Y. Zheng, D. G. Nocera, A. Y. Ting, M. G.
    Bawendi, J. Am. Chem. Soc. 2008, 130, 1274.
    [9] G. Ruan, A. Agrawal, A. I.Marcus, S. Nie, J. Am. Chem. Soc. 2007, 129, 14759
    [10] R. Gill, M. Zayats, I. Willner, Chem., Int. Ed. 2008, 47, 7602
    [11] A. C. Vinayaka, S. Basheer, M. S. Thakur, Bioelectron. 2009, 24, 1615
    [12] K. Pinwattana, J. Wang, C.-T. Lin, H.Wu, D.Du, Y.Lin, O.Chailapakul,
    Biosens. Bioelectron, 2010, 26, 1109
    [13] H. Z. Zhong, Y. Zhou, M. F.Ye, Y. J.He, J. P.Ye, C.He, C. H.Yang, Y. F.Li,
    Chem. Mater. 2008, 20, 6434
    [14] Adi Permadi, Mochamad Zakki Fahmi, Jem-Kun Chen, Jia-Yaw Chang,
    Chun-Yi Cheng, Guo-Quan Wang Keng-Liang Ou RSC Adv., 2012,2, 6018
    [15] W. C. Law, K. T. Yong, I. Roy, H. Ding, R.Hu, Zhao, W. W.;Prasad, P. N. Small
    2009, 5, 1302
    [16] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J.Li.,
    G. Sundaresan, A. M.Wu, S. S.Gambhir, S.Weiss, Science 2005, 307, 538
    [17] S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A.
    Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi,
    J. V. Frangioni, Nat. Biotechnol. 2004, 22, 93.
    [18] X. H.Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, S. M. Nie, Nat.
    Biotechnol. 2004, 22, 969
    [19] C.-P. Tsai, Y. Hung, Y.-H. Chou, D.-M. Huang, J.-K. Hsiao, C. Chang, Y.-C. Chen
    and C.-Y. Mou, Small, 2008, 4, 186.
    [20] P. Debouttiere, S. Roux, F. Vocanson, C. Billotey, O. Beuf, A. Faver-Reguillon, Y.
    Lin, S. Pellet-Rostaing, R. Lamartine, P. Perriat and O. Tillement, Adv. Funct.
    Mater., 2006, 16, 2330.
    [21] C. P. Tsai, Y. Hung, Y. H. Chou, D. M. Huang, J. K. Hsiao, C. Chang, C. Y. Chen
    and C. Y. Mou, Small, 2008, 4, 186.
    [22] Y. T. Lim, M. Y. Cho, B. S. Choi, J. M. Lee and B. H. Chung, Chem. Commun.,
    2008, 4930.
    [23] W. C. Chan, S. Nie, Science 1998, 281, 2016
    [24] M. Bruchez, M. Moronne, P. Gin, S.Weiss, A. P.Alivisatos, Science 1998, 281,
    2013
    [25] T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A. L. Rogach, S.
    Keller, J. Rädler, G. Natile, W. J. Parak, Nano Lett.2004, 4, 703
    [26] Mochamad et al. (2012) R. Brodersen, J. Biol. Chem., 1979, 254, 2364
    [27] A. Angelini, J. Morales-Sanfrutos, P. Diderich, S. Chen and C. Heinis, J. Med.
    Chem., 2012, 55, 10187
    [28] C. He, J. Liu, L. Xie, Q. Zhang, C. Li, D. Gui, G. Zhang and C. Wu, Langmuir,
    2009, 25, 13456
    [29] B. Zhang, X. Wang, F. Liu, Y. Cheng and D. Shi, Langmuir, 2012,28, 16605.
    [30] C.-Y.Cheng, K.-L. Ou, W.-T. Huang, J.-K. Chen, J.-Y. Chang, C.-H. Yang,
    ACS Appl. Mater.Interfaces 2013, 5, 4389
    [31] D.W.Deng, Y. Q. Chen, J. Cao, J. M. Tian, Z. Y. Qian, S.Achilefu, Y. Q. Gu,
    Mater. 2012, 24, 3029
    [32] W. Guo, N. Chen, Y. Tu, C. Dong, B. Zhang, C. Hu, J. Chang, Theranostics 2013,
    3, 99
    [33] K. T. Yong, I. Roy, R. Hu, H. Ding, H. X. Cai, J. Zhu, X. H. Zhang, E. J. Bergey,
    P. N. Prasad, Integr. Biol. 2010, 2, 121
    [34] K. Yu, P. Ng, J. Ouyang, M. B. Zaman, A. Abulrob, T.N. Baral, D. Fatehi, Z.
    JJakubek, D. Kingston, X. Wu, X. Liu, C. Hebert, D. M. Leek, D. M. Whitfield,
    ACS Appl. Mater.Interfaces 2013, 5, 2870
    [35] H.Shen, H. Yuan, F. Wu, X. Bai, C. Zhou, H. Wang, T. Lu, Z.Qin, L. Ma, L. S.Li,
    J. Mater. Chem. 2012, 22, 18623
    [36] L. Li, T. J. Daou, I.Texier, T. T. K. Chi, N. Q. Liem, P. Reiss, Chem. Mater. 2009,
    21, 2422
    [37] C.-P. Tsai, Y. Hung, Y.-H. Chou, D.-M. Huang, J.-K. Hsiao, C. Chang, Y.-C.
    Chen and C.-Y. Mou, Small, 2008, 4, 186
    [38] P. Debouttiere, S. Roux, F. Vocanson, C. Billotey, O. Beuf, A. Faver-Reguillon,
    Y. Lin, S. Pellet-Rostaing, R. Lamartine, P. Perriat and O. Tillement, Adv. Funct.
    Mater.,2006, 16, 2330.
    [39] Y. T. Lim, M. Y. Cho, B. S. Choi, J. M. Lee and B. H. Chung, Chem. Commun., 2008,
    4930.
    [40] P. Ionita, J. Wolowska, V. Chechik and A. Caragheorgheopol, J. Phys. Chem. C, 2007,
    111,16717.
    [41] D. Sehgal and I. K. Vijay, Analytical Biochemistry, 1994, 218, 87.
    [42] M. A. Gilles, A. Q. Hudson and C. L. Borders Jr, Anal. Biochem., 1990, 184, 244.
    [43] C. M. Paulos, M. J. Turk, G. J. Breur and P. S. Low, Adv. Drug Deliver. Rev., 2004,
    56, 1205.
    [44] V. Morosini, T. Bastogne, C. Frochot, R. Schneider, A. Francois, F. Guillemin and M.
    Barberi-Heyob, Photoch. Photobio. Sci., 2011, 10, 842.

    ch4
    [1] D. E. Lee,; H Koo,.; I. C. Sun,; J. H. Ryu,; K. Kim,; I. C. Kwon, Chem. Soc. Rev.
    2012, 41, 2656
    [2] S. Kunjachan,; J. Ehling,; G. Storm,; F. Kiessling,; T. Lammers, Chem. Rev. 2015,
    115, 10907
    [3] P. Miao,; K. Han,; Y. Tang,; B. Wang,; T. Lin,; W. Cheng, Nanoscale 2015, 7, 1586
    [4] S. Y. Lim,; W. Shen,; Z. Q. Gao, Chem. Soc. Rev. 2015, 44, 362-381.
    [5] Y. Xu,; X. H. Jia,; X. B. Yin,; X. W. He,; Y. K. Zhang, Anal. Chem. 2014, 86, 12122.
    [6] N. Q. Gong,; H. Wang,; S Li,.; Y. L Deng,.; X. A. Chen,; L Ye,.; W. Gu, Langmuir
    2014, 30, 10933
    [7] Y. P. Shi,; Y. Pan,; J. Zhong,; J. Yang,; J. H. Zheng,; J. L. Cheng,; R. Song,; C. Q. Yi,
    Carbon 2015, 93, 742
    [8] S. H. Chiu,; G. Gedda,; W. M. Girma,; J. K. Chen,; Y. C. Ling,; A. V. Ghule,; K. L.
    Ou,; J. Y.Chang, Acta Biomater. 2016, 46, 151
    [9] D. Chen,; D. Lawton,; M. R. Thompson,; Q. Liu, Carbohydr. Polym. 2012, 90, 709
    [10] J. P. Wang,; S. Sahu,; S. K Sonkar,.; K. N. Tackett,; K. W. Sun,; Y. M. Liu,; RSC Adv.
    2013, 3, 15604
    [11] L. L. Zhu,; Y. J Yin,.; C. F. Wang,; S. Chen, J. Mater. Chem. C 2013, 1 (32), 4925
    [12] X. Y. Qin,; W. B. Lu,; A. M. Asiri,; A. O Al-Youbi,.; X. P. Sun, Sens. Actuators B-
    Chem. 2013, 184, 156
    [13] A. Prasannan,; T. Imae, Ind. Eng. Chem. Res. 2013, 52, 15673
    [14] X. W. Tan,; A. N. B. Romainor,; S. F. Chin,; S. M. Ng, J. Anal. Appl. Pyrol. 2014,
    105, 157
    [15] S. Y. Park,; H. U. Lee,; E. S. Park,; S. C. Lee,; J. W. Lee,; S. W. Jeong,; C. H. Kim,;
    Y. C. Lee,; Y. S. Huh,; J. Lee, ACS Appl. Mater. Interfaces 2014, 6, 3365
    [16] X. M. Yang,; Y Zhuo,.; S. S. Zhu,; Y. W. Luo,; Y. J Feng,.; Y. Dou, Biosens.
    Bioelectron. 2014, 60, 292
    [17] Y. S. Liu,; Y. A. Zhao,; Y. Y. Zhang, Sens. Actuators B-Chem. 2014, 196, 647
    [18] Y. P. Hu,; J. Yang,; J. W. Tian,; L. Jia,; J. S. Yu, Carbon 2014, 77, 775
    [19] C. D. D. S. Barbosa,; J. R. Correa,; G. A. Medeiros,; G. Barreto,; K. G. Magalhaes,;
    A. L de Oliveira,.; J. Spencer,; M. O. Rodrigues,; B. A. D. Neto, Chem. 2015, 21,
    5055
    [20] J. B. Essner,; C. H. Laber,; S. Ravula,; L. Polo-Parada,; G. A. Baker, Green Chem.
    2016, 18, 243
    [21] R. Jayakumar,; D. Menon,; K. Manzoor,; S. V. Nair,; H. Tamura, Carbohydr. Polym.
    2010, 82, 227
    [22] S. Hirano, Biotechnol. Annu. Rev. 1996, 2, 237
    [23] S. N. Kartal,; Y. Imamura, Bioresour. Technol. 2005, 96 (3), 389-392.
    [24] K.Vijayaraghavan,; K. Palanivelu,; M. Velan, Bioresour. Technol. 2006, 97, 1411
    [25] K. Vijayaraghavan,; H. Y. N.; Winnie, R. Balasubramanian, Desalination 2011, 266,
    195
    [26] P. X. Pinto,; S. R. Al-Abed,; D. J. Reisman, Chem. Eng. J. 2011, 166, 1002
    [27] T. Setoguchi,; T. Kato,; K. Yamamoto,; J. Kadokawa, Int. J. Biol. Macromol. 2012,
    50, 861.
    [28] S. Hajji,; O. Ghorbel-Bellaaj,; I. Younes,; K. Jellouli,; M. Nasri, Int. J. Biol.
    Macromol. 2015, 79, 167
    [29] V. Zargar,; M. Asghari,; A. Dashti, ChemBioEng Rev. 2015, 2, 204
    [30] S. Ifuku,; T. Urakami,; H. Izawa,; M. Morimoto,; H. Saimoto, RSC Adv. 2015, 5,
    64196
    [31] C. X. Wang,; Z. Z. Xu,; H. Cheng,; H. H. Lin,; M. G. Humphrey,; C. A Zhang,
    Carbon 2015, 82, 87.
    [32] Y. Q. Dong,; H. C Pang,.; H. B. Yang,; C. X. Guo,; J. W. Shao,; Y. W. Chi,; C. M. Li,;
    [33] T.Yu, Angew. Chem. Int. Ed. 2013, 52, 7800
    [34] H. Ding,; S. B. Yu,; J. S. Wei,; H. M. Xiong, ACS Nano 2016, 10 (1), 484-491.
    [35] F. Yuana,; S. Lia,; Z. Fana,; X. Mengb,; L. Fana,; S. Yang, Nano Today 2016, 11, 565
    [36] Y. Wang, ; A. Hu, J. Mater. Chem. C 2014, 2, 6921
    [37] Z. Liu,; X. Liu,; Q. Yuan,; K. Dong,; L. Jiang,; Z. Li,; J. Ren,; X. Qu, J. Mater. Chem.
    2012, 22, 14982
    [38] X. Hu,; M. Wang,; F. Miao,; J. Ma,; H. Shen,; N. Jia, J. Mater. Chem. B 2014, 2,
    2265
    [39] N. Luo,; C. Yang,; X. Tian,; J. Xiao,; J. Liu,; F. Chen,; D. Zhang,; D. Xu,; Y. Zhang,;
    G. Yang,; D. Chen,; L. Li, J. Mater. Chem. B 2014, 2, 5891
    [40] G. L. Zhang,; R. H. Du,; L. L. Zhang,; D. Q. Cai,; X. Sun,; Y. Zhou,; J. Zhou,; J. C.
    Qian,; K.Zhong,; K. Zheng,; D. Kaigler,; W. Q. Liu,; X. Zhang,; D. H. Zou,; Z. Y.
    Wu, Adv. Funct. Mater. 2015, 25, 6101
    [41] C. Y. Yu,; T. T. Xuan,; Y. W. Chen,; Z. J. Zhao,; X. X. Liu,; G. H. Lian,; H. L. Li, J.
    Alloy Compd. 2016, 688, 611
    [42] C. C. Huang,; N. H. Khu,; C. S. Yeh, Biomaterials 2010, 31, 4073
    [43] R. Komban,; J. P. Klare,; B. Voss,; J. Nordmann,; H. J. Steinhoff,; M. Haase, Angew.
    Chem., Int. Ed. 2012, 51, 6506
    [44] J. Y. Chang,; G. R. Chen,; J. D. Li, Phys. Chem. Chem. Phys. 2016, 18 , 7132
    [45] J. Liu,; X. M. Tian,; N. Q. Luo,; C. Yang,; J. Xiao,; Y. Z. Shao,; X. M. Chen,; G. W.
    Yang,; D. H. Chen,; L. Li, Langmuir 2014, 30 , 13005
    [46] P. Caravan,; J. J. Ellison,; T. J. McMurry,; R. B. Lauffer, Chem. Rev. 1999, 99 , 2293
    [47] J. Zhang,; G. Hao,; C. Yao,; S. Hu,; C. Hu,; B. Zhang, J. Mater. Chem. B 2016, 4,
    4110
    [48] P. S. Low,; W. A. Henne,; D. D. Doorneweerd, Acc. Chem. Res. 2008, 41, 120
    [49] T. P. Liu,; S. H. Wu,; Y. P. Chen,; C. M. Chou,; C. T Chen,. Nanoscale 2015, 7, 6471
    [50] Y. Yuan,; H. B. Sun,; S. C. Ge,; M. J. Wang,; H. X. Zhao,; L. Wang,; L. N. An,; J.
    Zhang,; H. F. Zhang,; B. Hu,; J. F. Wang,; G. L. Liang, ACS Nano 2015, 9, 761
    [51] R. O. Karlstrom,; O. V. Tyurina,; A. Kawakami,; N. Nishioka,; W. S. Talbot,; H.
    Sasaki,; A. F. Schier, Development 2003, 130, 1549
    [52] D. A. Kane,; M. Hammerschmidt,; M. C. Mullins,; H. M. Maischein,; M. Brand,; F. J.
    M. vanEeden,; M. FurutaniSeiki,; M. Granato,; P. Haffter,; C. P. Heisenberg,; Y. J.
    Jiang,; R. N. Kelsh,; J. Odenthal,; R. M. Warga,; C. NussleinVolhard, Development
    1996, 123, 47
    [53] Z. Liu,; X. M. Sun,; N. Nakayama-Ratchford,; H. J. Dai, ACS Nano 2007, 1, 50
    [54] C. L. Huang,; C. C. Huang,; F. D. Mai,; C. L. Yen,; S. H. Tzing,; H. T. Hsieh,; Y. C.
    Lingd,; J. Y. Chang, J. Mater. Chem. B 2015, 3, 651
    [55] J. M. Rosenholm,; E. Peuhu,; J. E. Eriksson,; C. Sahlgren,; M. Linden, Nano Lett.
    2009, 9, 3308

    ch5

    [1] S.S. Feng, S.Chien, Chem. Eng. Sci. 2003, 58, 4087
    [2] L.Cheng, C.Wang, L.Feng,; K. Yang, Z. Liu, Chem. Rev. 2014, 114, 10869.
    [3] L.Xu, L.Cheng, C.Wang, R . Peng, Z. Liu, Polym. Chem. 2014, 5, 1573
    [4] A. K. Rengan, A. B. Bukhari, A. Pradhan, R. Malhotra, R. Banerjee, R. Srivastava, A.
    De, Nano Lett. 2015, 15, 842
    [5] X.Huang, I.H . El-Sayed, W. Qian, M. A. El-Sayed, J. Am. Chem. Soc. 2006, 128,
    2115
    [6] P.Rai, S.Mallidi, X.Zheng, R.Rahmanzadeh, Y.Mir, S.Elrington, A.Khurshid,
    T.Hasan, Adv. Drug Delivery Rev. 2010, 62, 1094
    [7] C.Sun, J. S.Lee, M. Zhang, Adv. Drug Delivery Rev. 2008, 60, 1252
    [8] M.Liong, J.Lu, M. Kovochich, T. Xia, S. G.Ruehm, A. E.Nel, F.Tamanoi, J. I.Zink,
    ACS Nano 2008, 2, 889.
    [9] G.Gedda, S.Pandey, M. S.Khan, A.Talib, H.-F.Wu, RSC Advances 2016, 6, 13145
    [10] S.Pandey, A.Talib, M. M.Thakur, M. S.Khan, M. L.Bhaisare, G.Gedda, H.-F.Wu, J.
    Mater. Chem. B 2016, 4, 3713
    [11] X.Yan, Q.Yu, L.Guo, W.Guo, S.Guan, H. Tang, S. Lin, Z.Gan, ACS Appl. Mater.
    Interfaces 2017.
    [12] J.Croissant, M.Maynadier, O.Mongin, V.Hugues, M.Blanchard‐Desce, A.Chaix,
    X.Cattoën, M.Wong Chi Man, A.Gallud, M. Gary‐Bobo, Small 2015, 11, 295
    [13] X.Huang, M. A.El-Sayed, J. Adv. Res. 2010, 1, 13
    [14] T.Guo, Y.Lin, Z.Li, S.Chen, G.Huang, H.Lin, J.Wang, G.Liu, H.-H.Yang, Nanoscale
    2017, 9, 56
    [15] D.Pissuwan, S. M.Valenzuela, M. B.Cortie, Trends Biotechnol. 2006, 24, 62
    [16] E.Boisselier, D.Astruc, Chem. Soc. Rev. 2009, 38, 1759
    [17] K.-W.Hu, F.-Y.Jhang, C.-H.Su, C.-S.Yeh, J. Mater. Chem. 2009, 19, 2147
    [18] A. J.Coughlin, J. S.Ananta, N.Deng, I. V.Larina, P.Decuzzi, J. L.West, Small 2014,
    10, 556.
    [19] X.Ge, Z.-M.Song, L.Sun, Y.-F.Yang, L.Shi, R.Si, W.Ren, X.Qiu, H.Wang,
    Biomaterials 2016, 108, 35
    [20] Z.Khan, T.Singh, J. I.Hussain, A. A.Hashmi,. Colloids Surf., B 2013, 104, 11
    [21] R.Fenger, E.Fertitta, H.Kirmse, A.Thünemann, K.Rademann, Phys. Chem. Chem.
    Phys. 2012, 14, 9343
    [22] E. C.Dreaden, A. M.Alkilany, X.Huang, C. J.Murphy, M. A.El-Sayed, Chem. Soc.
    Rev. 2012, 41, 2740
    [23] H.Chen, G. D.Wang, W.Tang, T.Todd, Z.Zhen, C.Tsang, K.Hekmatyar, T.Cowger, R.
    B. Hubbard, W.Zhang, Adv. Mater. 2014, 26, 6761
    [24] F.Du, L.Zhang, L.Zhang, M.Zhang, A.Gong, Y.Tan, J.Miao, Y.Gong, M.Sun, H.Ju,
    Biomaterials 2017, 121, 109
    [25] C.Yu, T.Xuan, Y.Chen, Z.Zhao, X.Liu, G. Lian, H.Li, J. Alloys Compd. 2016, 688,
    611.
    [26] N.Gong, H.Wang, S.Li, Y.Deng, X. a.Chen, L.Ye, W.Gu, Langmuir 2014, 30, 10933
    [27] Y.Xu, Y.-H.Li, Y.Wang, J.-L.Cui, X.-B.Yin, X.-W.He, Y.-K.Zhang, Analyst 2014,
    139, 5134
    [28] Y.Xu, X.-H.Jia, X.-B.Yin, X.-W.He, Y.-K.Zhang, Anal. Chem. 2014, 86, 12122
    [29] X.Ren, L.Liu, Y.Li, Q.Dai, M.Zhang, X. Jing, J. Mater. Chem. B 2014, 2, 5541
    [30] Y.Shi, Y.Pan, J.Zhong, J.Yang, J.Zheng, J.Cheng, R.Song, C.Yi, Carbon 2015, 93,
    742
    [31] H.Yang, S.Santra, G. A.Walter, P. H.Holloway, Adv. Mater. 2006, 18, 2890
    [32] S.-H.Chiu, G.Gedda, W. M.Girma, J.-K.Chen, Y.-C.Ling, A. V.Ghule, K.-L.Ou, J.-
    Y.Chang, Acta Biomater. 2016, 46, 151
    [33] K.Vinodgopal, B.Neppolian, I. V.Lightcap, F.Grieser, M.Ashokkumar, P. V. Kamat, J.
    Phys. Chem. Lett. 2010, 1, 1987
    [34] X.Qin, W.Lu, A. M.Asiri, A. O.Al-Youbi, X.Sun, Green, Catal. Sci. Technol. 2013, 3,
    1027
    [35] B.Kim, W. M.Sigmund, Langmuir 2004, 20, 8239
    [36] K.Jiang, A.Eitan, L. S.Schadler, P. M.Ajayan, R. W.Siegel, N.Grobert, M.Mayne,
    M.Reyes-Reyes, H.Terrones, M.Terrones, Nano Lett. 2003, 3, 275
    [37] G.Gedda, S.Pandey, M. L.Bhaisare, H.-F.Wu, RSC Advances 2014, 4, 38027
    [38] G.Gedda, C.-Y. Lee, Y.-C.Lin, H.-f.Wu, Sens. Actuators, B 2016, 224, 396
    [39] T.Liu, N.Li, J. X.Dong, Y.Zhang, Y. Z.Fan, S. M.Lin, H. Q.Luo, N. B.Li, Biosens.
    Bioelectron. 2017, 87, 772
    [40] J.Yu, C.Yang, J.Li, Y.Ding, L.Zhang, M. Z.Yousaf, J.Lin, R.Pang, L.Wei, L.Xu, Adv.
    Mater. 2014, 26, 4114
    [41] H.Sun, Q.Yuan, B.Zhang, K.Ai, P.Zhang, L.Lu, Nanoscale 2011, 3, 1990
    [42] C.Han, L.Wu, L.Ge, Y.Li, Z.Zhao, Carbon 2015, 92, 31
    [43] L.Yang, X.Liu, Q.Lu, N.Huang, M.Liu, Y.Zhang, S.Yao, Anal. Chim. Acta 2016, 930,
    23
    [44] Z.-L.Wang, J.-M.Yan, H.-L.Wang, Y.Ping, Q.Jiang, J. Mater. Chem. A 2013, 1,
    12721.
    [45] S.Dutta, C.Ray, S.Mallick, S.Sarkar, A.Roy, T.Pal, RSC Advances 2015, 5, 51690
    [46] À.Ruyra, A.Yazdi, J.Espín, A.Carné‐Sánchez, N.Roher, J.Lorenzo, I.Imaz,
    D.Maspoch, Chem. - Eur. J. 2015, 21, 2508
    [47] .R.Komban, J. P.Klare, B.Voss, J. Nordmann, H. J.Steinhoff, M.Haase, Angew. Chem.,
    Int. Ed. 2012, 51, 6506
    [48] C.Platas‐Iglesias, L.Vander Elst, W.Zhou, R. N.Muller, C. F.Geraldes, T.Maschmeyer,
    J. A.Peters, Chem. - Eur. J. 2002, 8, 5121
    [49] N.Babayevska, B.Peplińska, M.Jarek, L.Yate, K.Tadyszak, J.Gapiński, I.Iatsunskyi,
    S.Jurga, RSC Advances 2016, 6, 89305
    [50] F.Zhang, T.-T.Sun, Y.Zhang, Q. Li, C.Chai, L.Lu, W.Shen, J.Yang, X.-W.He, Y.-
    K.Zhang, J. Mater. Chem. B 2014, 2, 7201
    [51] Y.-Y.Yao, G.Gedda, W. M.Girma, C.-L.Yen, Y.-C.Ling, J.-Y.Chang, ACS Appl.
    Mater. Interfaces 2017, 9,13887
    [52] G.Wang, X.Zhang, A.Skallberg, Y.Liu, Z.Hu, X.Mei, K.Uvdal, Nanoscale 2014, 6,
    2953.
    [53] S.Zhang, Z.Zha, X.Yue, X.Liang, Z.Dai, Chem. Commun. 2013, 49, 6776

    QR CODE