簡易檢索 / 詳目顯示

研究生: 張簡千琳
Chang-Chien, Chien Lin
論文名稱: 新型LED封裝結構與技術於光學特性改善之研究
NOVEL LED PACKAGING STRUCTURE & TECHNOLOGY FOR IMPROVEMENT OF OPTICAL PERFORMANCE
指導教授: 葉銘泉
Yip, Ming Chuen
方維倫
Fang, Weileun
口試委員: 陳政寰
陳煌坤
林弘毅
鄒慶福
葉銘泉
方維倫
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 155
中文關鍵詞: 新型LED封裝體玻璃結構點膠成型透鏡色座標監控
外文關鍵詞: LED package, Flip glass substrate, Dispensing lens, Color control
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出新型LED封裝結構體與製程方法用以達成提升發光效率、擴大發光角度、封裝製程中色座標控制等目的。同時以實驗的方式探討影響透鏡形式封裝體的空間顏色均勻性與效率因子。
    在翻轉玻璃封裝體設計中,透過Known Good Chromaticity Coordinate的製程流程,建立測試用外部藍光光源與封裝完成品的色座標位置關係,進而達成製程過程中預先檢測色座標分佈的可能性。透明玻璃封裝體的結構設計使封裝體的發光角提升到140°,同時Remote/Conformal Phosphor的架構也得以實現。因選擇玻璃當材料,封裝體的結構表面工藝可用來破壞全反射提升發光效率亦或是利用全反射擴大發光角。此乃新型LED封裝結構設計。
    透過基板上的環形微結構設計與材料調變,利用在邊界上的力學平衡達成不用模具即可成型Dome-type 形式的透鏡,用以提升發光效率,透過壓印製程調變透鏡頂端幾何形狀成型Crater-type 的透鏡,用以擴大發光角到175°。減少80%以上的設備投資金額。同時通過業界規範的信賴性實驗驗證。此乃封裝製程技術優化。
    延續所提出的透鏡型式LED封裝體製程方法,探討因封裝形式的變異、透鏡形式的變異、不同螢光粉塗佈方式(Conformal coating/Random distribution)與不同螢光粉的位置安排等狀況之下,其效率、發光角度、空間顏色的一致性與空間光譜的分析。


    The purposes of this study are to enhance the light extraction efficiency of LED package, expand the view angle, in process color bin control and low cost method for lens type LED package.
    A novel “Flip Glass Substrate” LED package structure is revealed. The transparent glass is employed as the substrate. This LED package architecture and process has three merits, (1) Large view angle (2) Color bin yield enhancement (like the concept of known-good-die), (3) Surface engineering for selective enhancement in efficiency or view angle.
    The structure design and its corresponding process are designed for the manufacture of lens type LED package. The Dome-type or Crater-type silicone lenses are achieved by dispensing and embossing process rather than molding process. This LED package technology herein has three merits: (1) Enhanced the flexibility of lens type LED package designs, (2) Dome-type package design is used to enhance the efficiency, (3) Crater-type package design is used to enhance the view angle.
    The characteristics of lens type LED package are studied. The variations in angular CCT and efficiency are experimentally discussed by considering the parameters of package structure、phosphor location and the applying method of phosphor.

    一.導論…………………………………………………………………1 1. LED發光原理與演進………………………………………………1 1.1產生白光的方法…………………………………………………1 1.2LED技術發展與方向………………………………………………2 1.3LED封裝型式的演進與應用面的擴展……………………………5 1.4PC(Phosphor Converted) LED的光源特性與品質………5 1.5大角度的光源需求………………………………………………6 1.6小結…………………………………………6 二.研究動機………………………………………………………13 三.文獻回顧………………………………………………………18 3.1 LED封裝結構與製程演進……………………………………18 3.2螢光粉的發光機制……………………………………………21 3.3封裝體內的螢光粉設計與塗佈方式………………………23 3.4封裝體成型Lens的方法與設計………………………………25 3.5破壞全反射增加光萃取效率的方法…………………………26 3.6光源品質-空間色彩均勻性………………………………………27 3.7結論………………………………………………………………28 四. 理論基礎…………………………………………………………45 4.1LED的光萃取…………………………………………………45 4.2封裝體效率與折射率匹配性計算……………………………48 4.3CIE 1931………………………………………………………50 4.4色溫(Color Temperature)與光通量(Luminous flux)…52 4.5液滴平衡的數學模式……………………………………………54 4.6結論………………………………………………………………56 五. 元件設計與製作…………………………………………………63 5.1翻轉玻璃封裝體結構設計(Flip Glass Substrate)…………………64 5.1.2Known Good Chromaticity Coordinate封裝製程流程…………65 5.1.3翻轉玻璃封裝體元件製作……………………………………66 5.2翻轉玻璃封裝體表面的微加工………………………………67 5.3.1非模具成型矽膠透鏡的封裝技術……………………………69 5.3.2非模具成型矽膠透鏡的製程流程……………………………71 5.4.1不同封裝結構體其發光特性比較……………………………72 5.4.2TO-CAN與Dome-Type(Phosphor under/in lens)的製程方式…73 5.5結論………………………………………………………………74 六. 測試結果與討論…………………………………………………87 6.1.1翻轉玻璃封裝體的製程結果…………………………………87 6.1.2Know Good Chromaticity Coordinate的製程方法…88 6.1.3翻轉玻璃封裝體的發光特性與空間顏色均勻度測試………89 6.1.4小結……………………………………………………………90 6.2.1翻轉玻璃封裝體玻璃出光面微結構工程……………………91 6.2.2小結………………………………………………………………93 6.3.1非模具成型矽膠透鏡封裝技術- Dome-Type………94 6.3.2非模具成型矽膠透鏡封裝技術- Crater-Type………96 6.3.3小結………………………………………………………96 6.4.1TO-CAN與Dome-Type(Phosphor under/in lens)封裝……97 6.4.2非模具成型矽膠透鏡封裝技術-光學效率比較………………98 6.4.3非模具成型矽膠透鏡封裝技術-光場分布比較………………100 6.4.4不同封裝形式下的空間色彩均勻度分析-CCT&光譜………101 6.4.5Dome-type封裝體信賴性測試結果…………………………105 6.4.6小結…………………………………………………………105 6.5總結…………………………………………106 七. 未來展望…………………………………………………142

    1.M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” Journal of Display Technology, 3, pp 160-175, 2007.
    2.M. S. Shur and A. Zukauskas, “Solid-State Lighting: Toward Superior Illumination,” Proceedings of the IEEE, 93, pp 1691-1703, 2005.
    3.J. Y. Tsao, “Solid-state Lighting: Lamps, Chips, and Materials for Tomorrow,” IEEE Circuit and Devices Magazine, 20, pp 28-37, 2004.
    4.J. K. Kim and E. F. Schubert, “Transcending the replacement paradigm of solid-state lighting,” Opt. Express, 16, pp 21835-21842, 2008.
    5.郭浩中、賴芳儀、郭守義, “LED原理與應用,” 五南圖書出版公司。
    6.D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, and M. J. Ludowise, “Illumination With Solid State Lighting Technology,” IEEE Journal of Selected Topics in Quantum Electronics, 8, pp 310-320, 2002.
    7.K. Bando, K. Sakano, Y. Noguchi and Y. Shimizu, “Development of High-bright and Pure-white LED Lamps,” Journal of Light & Visual Environment, 22, pp 2-5, 1998.
    8.P. Schlotter, R. Schmidt and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Applied Physics A:Material Science & Processing, 64, pp 417-418, 1997.
    9.Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, T. Mukai, “Ultra-High Efficiency White Light Emitting Diodes,” Japanese Journal of Applied Physics, 45, pp 1084-1086, 2006.
    10.M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, and M. G. Craford, “High-power truncated-pyramid (Al0.5Ga1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett., 75, pp 2365-2367, 1999.
    11.R. H. Horng, D. S. Wuu, and S. C. Wei, “AlGaInP/AuBe/glass light-emitting diodes fabricated by wafer bonding technology,” Appl. Phys. Lett., 75, pp 154-156, 1999.
    12.T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., 84, pp 855-857, 2004.
    13.K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., 40, pp 583-585, 2001.
    14.C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” Appl. Phys. Lett., 93, pp 9383-9385, 2003.
    15.邱晶晶, ” LED廠商之競爭策略分析,” 碩士論文, 政治大學, 2008。
    16.http://denko.panasonic.biz/ebox/everleds/lineup/outdoor/billboard/index.html.
    17.C. Sommer, F. Reil, J. R. Krenn, P. Hartmann, P. Pachler, S. Tasch, and F. P. Wenzl, “The Impact of Inhomogeneities in the Phosphor Distribution on the Device Performance of Phosphor-Converted High-Power White LED Light Sources,” Journal of Lightwave Technology, 28, pp 3226-3232, 2010.
    18.M. Steranka, J. Bhat, D. Collins, L. Cook, M. G. Craford, R. Fletcher, N. Gardner, P. Grillot, W. Goetz, M. Keuper, R. Khare, A. Kim, M. Krames, G. Harbers, M. Ludowise, P. S. Martin, M. Misra, G. Mueller, R. Mueller-Mach, S. Rudaz, Y.-C. Shen, D. Steigerwald, S. Stockman, S. Subramanya, T. Trottier, and J. J. Wierer, “High Power LEDs – Technology Status and Market Applications,” Physica status solidi(a), 194, pp 380-388, 2002.
    19.N. T. Tran and F. G. Shi, “Studies of phosphor concentration and thickness for phosphor-based white light-emitting-diodes,” Journal of Lightwave Technology, 26, pp 3556-3559, 2008.
    20.C. Sommer, F. P. Wenzl, P. Hartmann, P. Pachler, M. Schweighart, and G. Leising, “Tailoring of the color conversion elements in phosphor-converted high-power LEDs by optical simulations,” IEEE Photonics Technology Letters, 20, pp 739-741, 2008.
    21.Z. Y. Liu, S. Liu, K. Wang, and X. B. Luo, “Studies on optical consistency of white LEDs affected by phosphor thickness and concentration using optical simulation,” IEEE Transactions Components and Packaging Technologies, 33, pp 680-687, 2010.
    22.http://www.ansi.org/
    23.http://www.nichia.co.jp
    24.M. G. Craford, “LEDs Challenge the Incandescents,” IEEE Circuits and Devices Magazine, 8, pp 24-29, 1992.
    25.http://www.lumileds.com
    26.http://www.cree.com
    27.http://www.citizen.com
    28.Z. T. Li, Q. H. Wang, Y. Tang, C. Li, X. R. Ding, and Z. H. He, “Light Extraction Improvement for LED COB Devices by Introducing a Patterned Leadframe Substrate Configuration,” IEEE Transaction On Electron Devices, 60, pp 1397-1402, 2013.
    29.M. d. Samber, T. v. d. Ackerveken, M. Burghoom, N. Bruinsma and E. v. Grunsven, “A new Embedded Packaging Technology for high power LEDs,” 10th Electronics Packaging Technology Conference, Singapore, 2008, pp 242-248.
    30.W. K. Jeung, S. H. Shin, S. Y. Hong, S. M. Choi, S. Yi, Y. B. Yoon, H. J. Kim, S. J. Lee, and K. Y. Park, “Silicon-Based, Multi-Chip LED Package,” 2007 Electronic Components and Technology Conference, Reno, 2007, pp 722-727.
    31.Y. J. Tsai, R. C. Lin, H. L. Hu, C. P. Hsu, S.Y. Wen, and C. C. Yang, “Novel Electrode Design for Integrated Thin-Film GaN LED Package With Efficiency Improvement,” IEEE Photonics Technology Letters, 25, pp 609-611, 2013.
    32.C. f. Tsou, Y. S. Huang, and C. W. Lin, “Silicon-based Packaging Platform with Embedded Solder Interconnections for Light Emitting Diode,” Journal of Physics: Conference Series, 34, pp 76-81, 2006.
    33.B. Cao, S. Yu, H. Zheng, S. Liu , “3D Silicon-Based Packaging for Light Emitting Diodes,” 12th International Conference on Electronic Packaging Technology & High Density Packaging, Shanghai, China, 2011, pp 1090-1093.
    34.R. Zhang, S. W. R. Lee, D. G. Xiao, H. Chen, “LED Packaging using Silicon Substrate with Cavities for Phosphor Printing and Copper filled TSVs for 3D Interconnection,” Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, 2011, pp 1616-1621.
    35.R. M. Clegg, X. F. Wang, and B. Herman, Chemical analysis series, John Wiley and Sons, New York, 137, 196 (1996).
    36.劉如熹、劉宇桓,發光二極體激發之SrSi2N2O2:Yb 化合物螢光粉介紹發光二極體激發之SrSi2N2O2:Yb 化合物螢光粉介紹,科儀新知第二十八卷第二期95.10。
    37.http://www.chimeicorp.com
    38.Z. Liu, S. Liu, K. Wang, X. Luo, “Optical Analysis of Phosphor’s Location for High-Power Light-Emitting Diodes,” IEEE Transactions On Device And Materials Reliability, 9, pp 65-73, 2009.
    39.J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone and Y. Park, “Strongly Enhanced Phosphor Efficiency in GaInN White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup,” Japanese Journal of Applied Physics, 44, pp L649-L651, 2005.
    40.K. Chen, R. Zhang and S. W. R. Lee, “Integration of Phosphor Printing and Encapsulant Dispensing Processes for Wafer Level LED Array Packaging,” 11th International Conference on Electronic Packaging Technology & High Density Packaging, Xi'an, China, 2010, pp 1386-1392.
    41.C. Sommer, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, G. Leising, F. P. Wenzl, “A detailed study on the requirement for angular homogeneity of phosphor converted high power white LED light sources, ” Optical Materials, 31, pp 837-848, 2009.
    42.W. D. Collins, M. R. Krames, G. J. Verhoeckx, and N. J. M. Leth, “Using electrophoresis to produce a conformally coated phosphor-converted light emitting semiconductor,” U.S. Patent 6576 488, 2003.
    43.H. T. Huang, C. C. Tsai, and Y. P. Huang, “Conformal phosphor coating using pulsed spray to reduce color deviation of white LEDs,”
    Opt. Express, 18, pp A201-A206, 2010.
    44.J. H. Yum, S. Y. Seo, S. Lee, and Y. E. Sung, “Fabrication of full
    color phosphor screen by electrophoresis deposition combined with
    photolithography,” Proc. SPIE, 4445, pp 172-178, 2001.
    45.G. H. Negley and M. Leung, “Methods of coating semiconductor light
    emitting elements by evaporating solvent from a suspension,” U.S.
    Patent 7217583, 2007.
    46.B. Braune, K. Petersen, J. Strauss, P. Kromotis, and M. Kaempf, “A
    new wafer level coating technique to reduce the color distribution of
    LEDs,” Proc. SPIE, 6486, pp 6486x~1-6486x~11, 2007.
    47.Y. Shuai, Y. He, N. T. Tran, and F. G. Shi, “Angular CCT Uniformity of Phosphor Converted White LEDs: Effects of Phosphor Materials and Packaging Structures,” IEEE Photonics Technology Letters, 23, pp 137-139, 2011.
    48.Z. Y. Liu, C. Li, B. H. Yu, Y. H. Wang, and H. B. Niu, “Uniform White Emission of WLEDs Realized by Multilayer Phosphor With Pyramidal Shape and Inversed Concentration Distribution,”,” IEEE Photonics Technology Letters, 24, pp 1558-1560, 2012.
    49.K. E. Petersen, “Silicon as a mechanical material,” Proceedings of the IEEE, 70, pp 420-457, 1982.
    50.M. C. Wu, “Micromachining for optical and optoelectronic systems,” Proceedings of the IEEE, 85, pp 1833-1856, 1997.
    51.L. Lin, T. K. Shia, and C. - J. Chiu, “Silicon-processed plastic micropyramids for brightness enhancement applications,” Journal of Micromechanics and Microengineering, 10, pp 395-400, 2000.
    52.H. Ren, Y. -H. Fan, S. Gauza, S. - T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Applied Physics Letters, 84, pp 4789-4791, 2004.
    53.S. Y. Lee, H. W. Tung, W. C. Chen and W. Fang, “Thermal Actuated Solid Tunable Lens,” IEEE Photonics Technology Letters, 18, pp 2191-2193, 2006.
    54.B. Morgan, C. M. Waits, J. Krizmanic, R. Ghodssi, “Development of a deep silicon phase Fresnel lens using Gray-scale lithography and deep reactive ion etching,” Journal of Microelectromechanical Systems, 13, pp 113-120, 2004.
    55.T. Fujita, H. Nishihara, and J. Koyama, “Fabrication of micro lenses using electron-beam lithography,” Optics Letters, 6, pp 613-615, 1981.
    56.M. Heckele and W. K. Schomburg, “Review on micro molding of thermoplastic polymers,” Journal of Micromechanics and Microengineering, 14, pp R1-R14, 2004.
    57.http://www.hptg.com/
    58.M. Heckele, W. Bacher, K. D. Müller, “Hot embossing - The molding technique for plastic microstructures,” Microsystem Technologies, 4, pp 122-124, 1998.
    59.L. Lin, Y. - T. Cheng, C. - J. Chiu, “Comparative study of hot embossed micro structures fabricated by laboratory and commercial environments,” Microsystem Technologies, 4, pp 113-116, 1998.
    60.O. Larsson, O. Ohman, A. Billman, L. Lundbladh, C. Lindell, G. Palmskog, “Silicon based replication technology of3D-microstructures by conventional CD-injection molding techniques,” Solid State Sensors and Actuators, Transducers '97, Chicago, 1997, pp 1415-1418.
    61.http://www.asm.com
    62.http://www.towajapan.co.jp/intro.htm
    63.R. S. West, “Side Emitting High Power LED’s and their application in Illumination,” Proceedings of SPIE, 4776, Seattle, 2002, pp 171-175.
    64.C. F. Shen, S. J. Chang, W. S. Chen, T. K. Ko, C. T. Kuo, and S. C. Shei, “Nitride-Based High-Power Flip-Chip LED With Double-Side Patterned Sapphire Substrate,” IEEE Photonics Technology Letters, 19, pp 780-782, 2007.
    65.H. W. Huang, J. K. Huang, C. H. Lin, K. Y. Lee, H. W. Hsu, C. C. Yu, and H. C. Kuo, “Efficiency Improvement of GaN-Based LEDs With a SiO2 Nanorod Array and a Patterned Sapphire Substrate,” IEEE Electron Device Letters, 31, pp 582-584, 2010.
    66.J. S. Lee, J. Lee, S. Kim, and H. Jeon , “GaN Light-Emitting Diode with Deep-Angled Mesa Sidewalls for Enhanced Light Emission in the Surface-Normal Direction,” IEEE Transactions on Electron Devices, 55, pp 523-526, 2008.
    67.J. J. Chen, Y. K. Su, C. L. Lin, and C. C. Kao, “Light Output Improvement of AlGaInP-Based LEDs With Nano-Mesh ZnO Layers by Nanosphere Lithography,” IEEE Photonics Technology Letters, 22, pp 383-385, 2010.
    68.M. H. Shin, H. G. Hong, Y. J. Kim, “Gradient refractive index layer for improving the optical extraction efficiency of LED package with quantum dot phosphor,” Microopics Conference, Sendai, Japan, 2011, pp 1-2.
    69.S. Yu, R. Hu, M. Chen, S. Liu, “Improvement of light extraction efficiency of white LEDs using microstructure array on phosphor silicone layer,” 13th International Conference on Electronic Packaging Technology & High Density Packaging, Guilin, China, 2012, pp 674-677.
    70.Y. Tu, S. Z. Jin, Y. H. Wang, and L. L. Dou, “Color uniformity and data simulation in High-Power RGB LED modules using different LED-chips arrays, ” Proceedings of the SPIE, 6828, Beijing, China, 2008, 682816.
    71.S. Aoyama, A. Funamoto, and K. Imanaka, “Hybrid normal-reverse prism coupler for light-emitting diode backlight systems,” Applied Optics, 45, pp 7273-7278, 2006.
    72.Y. Meuret, H. Thienpont, F. Bruyneel and H. Thienpont, “Improving the color uniformity of a LED-array based illumination system with a tailored light distribution,” Proceedings of SPIE, San Diego, 2009, 74230N.
    73.K.C. Lee, S. M. Kim and J. H. Moon, “Improvement of spatial color uniformity in white light-emitting diodes with self-positioned phosphor layer,” Communications and Photonics Conference and Exhibition (ACP), Shanghai, 2010, pp 337-338.
    74.Z. Y. Liu, S. Liu, K. Wang, and X. B. Luo, “Optical Analysis of Color Distribution in White LEDs with Various Packaging Methods,” IEEE Photon. Techno. lett., 20, pp 2027-2029, 2008.
    75.Z. Y. Liu, C. Li, B. H. Yu, Y. H. Wang, and H. B. Niu, “Effects of YAG: Ce Phosphor Particle Size on Luminous Flux and Angular Color Uniformity of Phosphor-Converted White LEDs,” Journal of display Technology, 8, pp 329-335, 2012.
    76.蔡 尚 祐,LED 晶片微結構對光萃取效率及指向性之模擬與分析,國立中央大學光電科學研究所碩士論文,中華民國九十八年。
    77.http://en.wikipedia.org/
    78.C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Research & Application, 17, pp 142-144, 1992.
    79.李坤穆,溶膠-凝膠法製備超疏水性薄膜材料,國立中央大學化學工程與材料工程研究所碩士論文,中華民國九十三年。
    80.R. N. Wenzel, “Resistance of Solid Surfaces to Wetting by Water, Industrial Engineering Chemistry,” Publisher: ACS Publications, 28, pp 988-994, 1936.
    81.A. B. D. Cassie and S. Baxter, “Wettability of Porous Surfaces,” Transactions of the Faraday Society, 40, pp 546-551, 1944.
    82.R. Hu, X. Luo, S. Liu, “Effect of the Amount of Phosphor Silicone Gel on Optical Property of White Light-emitting Diodes Packaging
    ,” 12th International Conference on Electronic Packaging Technology & High Density Packaging, Shanghai, China, 2011, pp 1081-1084.
    83.林昭榮,特殊的界面活性劑與異常的潤濕現象,國立中央大學
    化學工程與材料工程學系碩士論文,中華民國九十七年。
    84.H. Zheng, J. Ma, X. Luo, S. Liu, “Precise model of phosphor geometry formed in dispensing process of LED packaging,” 12th International Conference on Electronic Packaging Technology & High Density Packaging, Shanghai, China, 2011, pp 1077-1080.
    85.A. Mujumdar, A. N. Beris, A. B. Metzner , “Transient phenomena in thixotropic systems,” Journal of Non-Newtonian Fluid Mechanics, 102, pp 157-178, 2002.
    86.高國峯,GaN-LED晶片結構對光萃取效率影響的研究,國立中央大學光電科學研究所碩士論文,中華民國九十五年。
    87.李宗憲,氮化鎵發光二極體之光萃取效率分析與晶片設計,國立中央大學光電科學研究所博士論文,中華民國九十七年。
    88.http://www2.panasonic.biz/es/lighting/feu/
    89.http://www.enplas.co.jp/english/business/led_product/
    90.http://www.osram-os.com/
    91.陳靜儀,矽酸鹽螢光粉用於白光LED之光學模型,國立中央大學光電科學研究所博士論文,中華民國九十七年。
    92.N. T. Tran, J. P. You, and F. G. Shi, “Effect of Phosphor Particle Size on Luminous Efficacy of Phosphor-Converted White LED,” Journal of Lightwave Technology, 27, pp 5145-5150, 2009.
    93.Y. Zhu and N. Narendran, “Investigation of Remote-Phosphor White Light-Emitting Diodes with Multi-Phosphor Layers,” Jpn. J. Appl. Phys., 49, pp 100203, 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE