簡易檢索 / 詳目顯示

研究生: 王俊傑
Wang, Chun Chieh
論文名稱: 石墨烯奈米結構於能源領域之應用
Applications of Graphene-based Nanostructures in Energy
指導教授: 呂世源
Lu, Shih Yuan
口試委員: 董瑞安
周更生
李岱洲
吳嘉文
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 156
中文關鍵詞: 石墨烯超級電容器染料敏化太陽能電池光催化水分解產氫
外文關鍵詞: graphene, supercapacitor, dye-sensitized solar cells, water splitting
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對不同於二維結構石墨烯(graphene)的形式,建構出三種以石墨烯為基礎的奈米結構,如:石墨烯氣凝膠、石墨烯量子點以及三維多孔石墨烯,並將其應用於能源領域中之超級電容器、染料敏化太陽能電池以及光催化水分解產氫。超級電容器方面,本研究製備出三維網狀石墨烯氣凝膠並利用電化學沉積方式,將功能性材料氧化錳沉積於石墨烯氣凝膠骨架上,以進行複合材料電極於電化學電容器上的效能評估。透過石墨烯氣凝膠三維網狀的結構特徵,除了可提升氧化錳的沉積量,並能將其有效分散使參與電化學反應的活性面積增加外,介孔洞的特徵表現及三維網狀結構的良好連結特性亦可降低電解液於孔洞間的擴散與電荷傳遞的阻力,使其複合材料成為理想的超級電容器電極材料。另外;三維多孔石墨烯則是經由一個簡單、快速以及可量化生產的簡易混合與加熱製程所製備。以三維多孔石墨烯組裝成對稱性超級電容器並搭配膠態電解質形成可撓曲式元件,除了擁有良好的電容器效能表現外,亦可於較寬的溫度範圍下進行操作。染料敏化太陽能電池的部分,由低廉的碳黑材料透過微波熱裂解的方式快速製備出石墨烯量子點,並將其修飾於具介孔洞特性的碳氣凝膠上,以做為對電極來進行催化活性以及電池效率上的評估。此複合材料不但具有低廉、高效能表現以外,更可於穩定性上,進一步取代以白金電極做為對電極材料在染料敏化太陽能電池上的應用。最後於光催化水分解產氫的部分,以硫化鎘光觸媒進行逐步改進,包含鋅鎘硫化物固態溶液的製備,硫化亞銅以及鋅鎘硫化物固態溶液的p-n型異質結構光觸媒,以及利用三維多孔石墨烯做為光觸媒承載體的一系列設計,將對應出合適的能帶結構與受光激發所產生電子電洞對可被有效的分離效果來探討在太陽光催化水分解產氫效率上的提升。綜觀以上所探討之石墨烯奈米結構的相關製備、鑑定以及在超級電容器、染料敏化太陽能電池與光催化水分解產氫的效能表現,將在此論文中逐一說明及討論。


    In this dissertation, graphene based nanostructures including graphene aerogels (GAs), graphene quantum dots (GQDs), and 3D porous graphene (StG) are produced and applied in supercapacitors, dye-sensitized solar cells (DSSCs), and hydrogen production through photocatalytic water splitting. For supercapacitor applications, MnO2 electrodeposited on GAs are used as the electrode for pseudocapacitors. The 3D structural advantages of GAs made possible the high mass loading of the active material, manganese oxide, large amounts of electroactive surfaces for the superficial redox events, fast mass transfer within the porous structure, and well-connected conductive paths for the involved charge transport. Furthermore, 3D porous graphene nanostructure (StG) was synthesized by a simple, fast, and scalable mix-and-heat process. StG was used as the electrode material to fabricate flexible, gel-type symmetric supercapacitors of outstanding capacitive performances and applicable in a wide temperature range environment. For DSSC applications, GQDs were derived from carbon black through one fast microwave-assisted oxidative cleavage process and thus decorated mesoporous carbon aerogels (GQD/CA) are used as the counter electrode. The GQD/CA composite thus proves to be an inexpensive, efficient, and stable alternative to Pt as the counter electrode material for DSSCs. Finally, a cocktail strategy to design composite semiconductor photocatalysts for p-Cu2S/n-ZnxCd1-xS nanocrystals dispersed in 3D porous graphene nanostructure, possessing excellent charge separations and suitable band structures, are applied in hydrogen generation through photocatalytic water splitting. The relevant properties of the synthesized graphene based nanostructures and the performances of the supercapacitors, DSSCs, and photocatalysts are investigated and discussed in this study.

    Contents Abstract..........................................................................................................................I Acknowledgement......................................................................................................III Contents.....................................................................................................................IV Figure Contents.........................................................................................................VII Scheme Contents.....................................................................................................XIII Table Contents.........................................................................................................XIII Chapter 1 Introduction................................................................................................1 1.1 Preface.................................................................................................................1 1.2 Research Motivation and Scope........................................................................2 1.3 Introduction of Supercapacitor........................................................................7 1.4 Introduction of Symmetric capacitors..............................................................8 1.5 Introduction of DSSCs......................................................................................9 1.6 Introduction of Water Splitting.......................................................................10 Chapter 2 Literature Review....................................................................................12 2.1 Composite electrodes for supercapacitor......................................................12 2.1.1 Pseudocapacitors based on manganese oxides..........................12 2.1.2 Effect of thickness on MnOx electrode..................................................13 2.1.3 MnO2/carbon composite electrode....................................................15 2.2 Counter electrode of DSSCs...................................................................19 2.2.1 Carbon material in counter electrode....................................................19 2.2.2 Catalytic activity of I-/I3- redox couple................................................22 2.2.3 Graphene quantum dots (GQDs)..........................................................24 2.3 Flexible supercapacitor................................................................................27 2.3.1 Flexible electrode.....................................................................................27 2.3.2 Gel polymer electrolyte......................................................................28 2.3.3 3D graphene based materials in flexible supercapacitors............29 2.4 Water splitting......................................................................................32 2.4.1 Photocatalytic mechanism....................................................................32 2.4.2 ZnxCd1-xS solid solution....................................................................33 2.4.3 Heterojunction photocatalyst............................................................34 2.4.4 ZnxCd1-xS /graphene composite photocatalyst..................................35 Reference............................................................................................................37 Chapter 3 Experimental Procedure.........................................................................42 3.1 Chemials.........................................................................................................42 3.2 Instruments..........................................................................................47 Chapter 4 Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material...........................................................................50 4.1 Introduction.....................................................................................................50 4.2 Experimental Section..............................................................................53 4.2.1 Synthesis of graphene aerogels.........................................................53 4.2.2 Preparation of MnO2/GA composite electrodes...........................54 4.2.3 Electrochemical measurements.........................................................55 4.2.4 Characterizations..............................................................................55 4.3 Results and Discussion....................................................................................56 4.4 Conclusion....................................................................................69 References...............................................................................................................69 Chapter 5 Carbon black derived graphene quantum dots composited with carbon aerogel as a highly efficient and stable reduction catalyst for iodide/tri-iodide couple.........................................................................................72 5.1 Introduction......................................................................................................72 5.2 Experimental section........................................................................................74 5.2.1 Synthesis of GQDs................................................................................74 5.2.2 Synthesis of GQD/CA..........................................................................75 5.2.3 Electrode fabrication.............................................................................76 5.2.4 Characterizations.............................................................................76 5.3 Results and Discussion.....................................................................................77 5.4 Conclusions.......................................................................................................89 References...............................................................................................................89 5.5 Supporting Information................................................................................93 5.5.1 Electrode preparation for DSSCs.......................................................93 5.5.2 Assembly and performances of DSSCs.............................................93 Chapter 6 3D porous graphene nanostructure from a simple, fast, scalable process for high performance flexible gel-type supercapacitors........................96 6.1 Introduction....................................................................................................96 6.2 Experimental......................................................................................99 6.2.1 Preparation of graphene oxide (GO).....................................................99 6.2.2 Preparation of starch/RGO...................................................................100 6.2.3 Preparation of LiCl/polyvinyl alcohol (PVA) gel electrolyte………101 6.2.4 Fabrication of flexible symmetric supercapacitors.............................101 6.2.5 Electrochemical measurements.............................................................101 6.2.6 Materials characterization....................................................................102 6.3 Results and Discussion...................................................................................103 6.4 Conclusion....................................................................................................116 References............................................................................................................117 6.5 Supporting Information...............................................................................122 Chapter 7 p-Cu2S/n-ZnxCd1-xS nanocrystals dispersed in 3D porous graphene nanostructure: an excellent photocatalyst for hydrogen generation through water splitting...................................................................................................................124 7.1 Introduction....................................................................................................124 7.2 Experimental section.....................................................................................126 7.2.1 Preparation of ZnxCd1-xS.................................................................126 7.2.2 Preparation of graphene oxide (GO).........................................126 7.2.3 Preparation of starch/RGO (StG)...............................................127 7.2.4 Preparation of Cu2S/Zn0.71Cd0.29S and Cu2S/Zn0.71Cd0.29S/StG.......127 7.2.5 Photocatalytic hydrogen production..................................................128 7.2.6 Characterization....................................................................................128 7.3 Result and Discussion...................................................................................129 7.4 Conclusions.....................................................................................................145 References.............................................................................................................146 7.5 Supporting Information.........................................................................148 Chapter 8 Conclusions and Future Prospects........................................................149 Curriculum Vitae......................................................................................................152

    1. M. Winter, R. J. Brodd, Chem. Rev., 2004, 104, 4245.
    2. A. Burke, J. Power Sources, 2000, 91, 37.
    3. J. R. Miller, P. Simon, Science, 2008, 321, 651.
    4. B. O’Regan, M. Gratzel, Nature, 1991, 353, 737.
    5. M. Gratzel, Nature, 2001, 414, 338.
    6. G. E. Tulloch, J. Photochem. Photobiol. A-Chem., 2004, 164, 209.
    7. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev., 2010, 110, 6595.
    8. J. A. Turner, Science, 1999, 285, 687.
    9. T. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science, 2007, 317, 100.
    10. A. A. Tahir, K. G. U. Wijayantha, S. Saremi-Yarahmadi, M. Mazhar, V. Mckee, Chem. Mater., 2009, 21, 3763.
    11. R. D. Cortright, R. R. Davda, J. A. Dumesic, Nature, 2002, 418, 964.
    12. I. K. Kapdan, F. Kargi, Enzyme Microb. Technol., 2006, 38, 569.
    13. A. T. Ashcroft, A. K. Cheetham, M. L. H. Green, P. D. F. Vernon, Nature, 1991, 352, 225.
    14. Z. Kang, Z. L. Wang, Adv. Mater., 2003, 15, 521.
    15. A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, J. Am. Chem. Soc., 2002, 124, 13547.
    16. D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature, 2006, 440, 295.
    17. F. E. Osterloh, Chem. Mater., 2008, 20, 35.
    18. A. Arico, Nat. Mater. 2005, 4, 366.
    19. Y. G. Guo, J. S. Hu, L. J. Wan, Adv. Mater., 2008, 20, 2878.

    20. D. R. Rolison, J. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes, T. M. McEvoy, M. E. Bourg, A. M. Lubers, Chem. Soc. Rev., 2009, 38, 226.
    21. J. Liu, G. Cao, Z. Yang, D. Wang, D. Dubois, X. Zhou, G. L. Graff, L. R. Pederson, J. G. Zhang, ChemSusChem, 2008, 1, 676.
    22. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature, 1985, 318, 162.
    23. S. Ijima, Nature, 1991, 354, 56.
    24. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science, 2004, 306, 666.
    25. M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett., 2008, 8, 3498.
    26. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature, 2005, 438, 197.
    27. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Lett., 2008, 8, 902.
    28. C. Lee, X. Wei, J. W. Kysar, J. Hone, Science, 2008, 321, 385.
    29. M. Z. Jacobson, Energy Environ. Sci., 2009, 2, 148.
    30. R. M. Dell, D. A. J. Rand, J. Power Sources, 2001, 100, 2.
    31. R. W. Pekala, J. Mater. Sci., 1989, 24, 3221.
    32. L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, A. K. Geim, Science, 2008, 320, 356.
    33. P. Thounthong, V. Chunkag, P. Sethakul, B. Davat, M. Hinaje, IEEE Trans. Veh. Technol. 2009, 58, 3892.
    34. J. W. Long, D. Belanger, T. Brousse, W. Sugimoto, M. B. Sassin, O. Crosnier, MRS Bull., 2011, 36, 513.
    35. E. Frackowiak, Phys. Chem. Chem. Phys., 2007, 9. 1774.
    36. M. Gratzel, Nature, 2001, 414, 338.
    37. A. Fujishima, K. Honda, Nature, 1972, 238, 37.
    38. A. Kudo, H. Kato, I. Tsuji, Chem. Lett., 2004, 33, 1534.
    39. A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
    40. K. Naoi, P. Simon, The Electrochemical Society Interface Spring 2008, 34.
    41. H. Y. Lee, J. B. Goodenough, J. Solid State Chem., 1999, 144, 220.
    42. J. N. Broughton, M. J. Brett, Electrochim. Acta, 2004, 49, 4439.
    43. M. Toupin, T. Brousse, D. Belanger, Chem. Mater., 2004, 16, 3184.
    44. K. W. Nam, K.B. Kim, J. Electrochem. Soc., 2006, 153, A81.
    45. T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier, D. Belanger, J. Electrochem. Soc., 2006, 153, A2171.
    46. A. E. Fischer, K. A. Pettigrew, D. R. Rolison, R. M. Stroud, J. W. Long, Nano Lett., 2007, 7, 281.
    47. X. Jin, W. Zhou, S. Zhang, G. Z. Chen, Small, 2007, 3, 1513.
    48. Z. Li, J. Wang, S. Liu, X. Liu, S. Yang, J. Power Sources, 2011, 196, 8160.
    49. M. N. Patel, X. Wang, B. Wilson, D. A. Ferrer, S. Dai, K. J. Stevenson, K. P. Johnston, J. Mater. Chem., 2010, 20, 390.
    50. Y. T. Wu, C. C. Hu, J. Electrochem. Soc., 2004, 151, A2060.
    51. J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Carbon, 2010, 48, 3825.
    52. G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J. R. McDonough, X. Cui, Y. Cui, Z. Bao, Nano Lett., 2011, 11, 2905.
    53. J. Zhang, J. Jiang, X. S. Zhao, J. Phys. Chem. C, 2011, 115, 6448.
    54. C-L. Liu, K-H. Chang, C. C. Hu, W-C. Wen, J. Power Sources, 2012, 217, 184.
    55. J. W. Lee, A. S. Hall, J. D. Kim, T. E. Mallouk, Chem. Mater., 2012, 24, 1158.
    56. G. Wang, W. Xing, S. Zhuo, J. Power Sources, 2009, 194, 568.
    57. W. J. Lee, E. Ramasamy, D. Y. Lee, J. S. Song, ACS Appl. Mater. Interfaces, 2009, 1, 1145.
    58. H. Choi, H. Kim, S. Hwang, Y. Han, M. Jeon , J. Mater. Chem., 2011, 21, 7548.
    59. E. Ramasamy, W. J. Lee, D. Y. Lee, J. S. Song,, Appl. Phys. Lett., 2007, 90, 173103.
    60. M. Wu, X. Lin, T. Wang, J. Qiu, T. Ma, Energy Environ. Sci., 2011, 4, 2308.
    61. J. D. Roy-Mayhew, D. J. Bozym, C. Punckt, I. A. Aksay, ACS Nano, 2010, 4, 6203.
    62. L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, A. K. Geim, Science, 2008, 320, 356.
    63. S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun, B. Yang, Chem. Commun., 2011, 47, 6858.
    64. R. Liu, D. Wu, X. Feng, K. Mullen, J. Am. Chem. Soc., 2011, 133, 15221.
    65. D. Pan, J. Zhang, Z. Li, M. Wu, Adv. Mater., 2010, 22, 734.
    66. Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, L. Qu, Adv. Mater., 2011, 23, 776.
    67. J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, P. M. Ajayan, Nano Lett., 2012, 12, 844.
    68. S. Bae, H. Kim, Y. Lee, X. Xu, J-S Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y-J Kim, K. S. Kim, B. Ozyilmaz, J-H Ahn, B. H. Hong, S. Ijima, Nat. Nanotechnol., 2010, 5, 574.
    69. P. Simon, Y. Gogotsi, Nat. Mater., 2008, 7, 845.
    70. G-M Wang, X-H Lu, Y-C Ling, T. Zhai, H-Y Wang, Y-X Tong, Y. Li, ACS Nano, 2012, 6, 10296.
    71. X-H Lu, G-M Wang, T. Zhai, M-H Yu, S-L Xie, Y-C Ling, C-L Liang, Y-X Tong, Y. Li, Nano Lett., 2012, 12, 5376.
    72. C. Liu, Z. Yu, D. Neff, A. Zhamu, B-Z Jang, Nano Lett., 2010, 10, 4863.
    73. Z-S Wu, G. Zhou, L-C Yin, W. Ren, F. Li, H-M Cheng, Nano Energy, 2012, 1, 107.
    74. A. Ghosh, Y. H. Lee, ChemSusChem, 2012, 5, 480.
    75. T. Chen, L. Dai, Mater. Today, 2013, 16, 272.
    76. Q-F Zheng, Z-Y Cai, Z-Q Ma, S-Q Gong, ACS Appl. Mater. Interfaces, 2015, 7, 3263.
    77. Y-X Xu, Z-Y Lin, X-Q Huang, Y. Liu, Y. Huang, X-F Duan, ACS Nano, 2013, 7, 4042.
    78. K. Maeda, J. Photoch. Photobio. C, 2011, 12, 237.
    79. H. Zhou, Y. Qu, T. Zeid, X. Duan, Energy Environ. Sci., 2012, 5, 6732.
    80. M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev., 1995, 95, 69.
    81. Y-J Wang, Q-S Wang, X-Y Zhan, F-M Wang, M. Safdar, J. He, Nanoscale, 2013, 5, 8326.
    82. N. Serpone, J. Phys. Chem. B, 2006, 110, 24287.
    83. D-N Ke, S-L Liu, K. Dai, J-P Zhong, L-N Zhang, T-Y Peng, J. Phys. Chem. C, 2009, 113, 16021.
    84. Q. Li, B-D Guo, J-G Yu, J-G Ran, B-H Zhang, H-J Yan, J-R Gong, J. Am. Chem. Soc., 2011, 133, 10878.
    85. D-H Wang, L. Wang, A-W Xu, Nanoscale, 2012, 4, 2046.
    86. M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, Renewable and Sustainable Energy Reviews, 2007, 11, 401.
    87. S. Boumaza, A. Boudjemaa, A. Bouguelia, R. Bouarab, M. Trari, Appl. Energy 2010, 87, 2230.
    88. J. Zhang, J-G Yu, M. Jaroniec, J-R Gong, Nano Lett., 2012, 12, 4584.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE