研究生: |
蘇品勻 Su,Ping Yun |
---|---|
論文名稱: |
量化人物誌:資料導向之服務設計方法 Creating Persona with Quantitative Validation:A Data Driven Service Design Methodology |
指導教授: |
許裴舫
Hsu, Pei Fang |
口試委員: |
嚴秀茹
Yen, Hsiu Ju 雷松亞 Soumya Ray |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 服務科學研究所 Institute of Service Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 人物誌方法 、人物誌驗證 、集群分析 、因素分析 、使用者研究 、服務設計 |
外文關鍵詞: | Persona, persona verify, cluster analysis, factor analysis, user research, service design |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人物誌(Persona)為企業界進行使用者研究、建構創新產品及服務的重要工具。傳統人物誌建立方法以質性研究為基礎,以建立栩栩如生的人物角色,幫助企業及服務設計師了解使用者行為及其目標與需求,然而,質性人物誌之信效度、準確度、以及市場代表性屢有爭議。
本研究提出一個以量化為基礎的人物誌建立方法,使用因素分析、集群分析、以及單因子變異數分析法,精準掌握人物誌之特徵、人物角色數目、以及集群間主要差異,解決質性人物誌過於主觀、不易驗證之疑慮。本研究以一真實台灣寵物公司--自力耕生,實際開發寵物生食創新服務為例,收集975份市場真實數據,以檢視本研究所提之量化人物誌方法在實際企業運用的結果。驗證結果顯示,本研究所提之量化人物誌建立方法(1)可準確區分出目前市場上,存在三群對於寵物飼養態度及飼主本身生活行為顯著不同之人物角色,(2)以此三類人物購買創新生食服務之真實數據為驗證,我們發現本研究所提之量化人物誌對於各類人物角色的預測十分精確,(3)本研究亦將傳統質化人物誌與量化樣本進行比對,發現傳統質化人物誌所創造出的主要角色,在大樣本的量化數據中,僅代表1.33%的族群。因此本研究所提之量化人物誌方法,可有效輔助質化方法,建立具有高信效度及可驗證性之人物誌角色,幫助企業有效建立服務創新。
Persona approach is based on this issue proposed by Cooper(1999). Generally, personas are created by using qualitative methods which help designers understand users’ needs and goals. Despite the fact that personas are widely used in user research, the lack of reliability and validity is often questioned. Also, it is hard to verify the accuracy of persona.
This study proposes a new method using quantitative methods for creating and validating personas to make sure each steps of process is supported by data. To solve the problem that qualitative methods are prone to be subjective and hard to verify, we adopt factor analysis to reduce the qualitative data, cluster analysis to group the users based on their similarities that decide the numbers of group, and one-way ANOVA, which helps us identify the most different characteristic between groups. The study also views the application of persona methods in the enterprise through cooperating with pet companies in Taiwan. Also, qualitative and quantitative methods are used to verify data simultaneously.
The result shows that the quantitative methods can be used to divide user groups accurately and also shows the buying behavior of each person meets our forecasting. Mapping the persona which was created by qualitative method to survey samples, we found that only 1.33% of the population are similar to quantitative persona, showing the defect of market representation.
[1] Argüelles, M., C. Benavides, and I. Fernández. "A new approach to the identification of regional clusters: hierarchical clustering on principal components." Applied Economics 46.21 (2014): 2511-2519.
[2] Bapna, R., Goes, P., Gupta, A., & Jin, Y. (2004). User heterogeneity and its impact on electronic auction market design: An empirical exploration. Mis Quarterly, 21-43.
[3] Cooper, A., & Reimann, R. (2003). About Face 2.0. The Essentials of Interaction Design.
[4] Cooper, Alan, Robert M. Reimann, and Dave Cronin. "About Face 3.0: The Essentials of Design." (2007): 220-221.
[5] Chang, Y. N., Lim, Y. K., & Stolterman, E. (2008, October). Personas: from theory to practices. In Proceedings of the 5th Nordic conference on Human-computer interaction: building bridges (pp. 439-442). ACM.
[6] Adler, P. J. (2005). Dealing with interviews when creating Personas: a practical approach. In Proceedings of Student Interaction Design Research Conference(pp. 84-88).
[7] Sinha, R. (2003, April). Persona development for information-rich domains. In CHI'03 extended abstracts on Human factors in computing systems (pp. 830-831). ACM.
[8] Ball, G., Ling, D., Kurlander, D., Miller, J., Pugh, D., Skelly, T., ... & Wax, T. (1997). Life-Like Computer Characters: The Persona Project at Microsoft Research. Software agents, 191-222.
[9] Grudin, J. (1991). Systematic sources of suboptimal interface design in large product development organizations. Human-Computer Interaction, 6(2), 147-196.
[10] Miguéis, V. L., Camanho, A. S., & e Cunha, J. F. (2012). Customer data mining for lifestyle segmentation. Expert Systems with Applications, 39(10), 9359-9366.
[11] Hackos, J. T., & Redish, J. (1998). User and task analysis for interface design.
[12] McGinn, J. J., & Kotamraju, N. (2008, April). Data-driven persona development. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1521-1524). ACM.
[13] Matthews, T., Judge, T., & Whittaker, S. (2012, May). How do designers and user experience professionals actually perceive and use personas? In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 1219-1228). ACM.
[14] Kujala, S., & Kauppinen, M. (2004, October). Identifying and selecting users for user-centered design. In Proceedings of the third Nordic conference on Human-computer interaction (pp. 297-303). ACM.
[15] Wang, X. (2014). Personas in the User Interface Design. University of Calgary, Alberta, Canada.
[16] Noyes, J., & Baber, C. (1999). User-centred design of systems. Springer Science & Business Media.
[17] Grudin, J., & Pruitt, J. (2002, January). Personas, participatory design and product development: An infrastructure for engagement. In PDC (pp. 144-152).
[18] Chen, L., Nayak, R., Kutty, S., & Xu, Y. (2013, March). Users segmentations for recommendation. In Proceedings of the 28th Annual ACM Symposium on Applied Computing (pp. 279-280). ACM.
[19] Idoughi, D., Seffah, A., & Kolski, C. (2012). Adding user experience into the interactive service design loop: a persona-based approach. Behaviour & Information Technology, 31(3), 287-303.
[20] Kashwan, K. R., & Velu, C. M. (2013). Customer segmentation using clustering and data mining techniques. International Journal of Computer Theory and Engineering, 5(6), 856.
[21] Cooper, A. (1999). The inmates are running the asylum:[Why high-tech products drive us crazy and how to restore the sanity] (Vol. 261). Indianapolis: Sams.
[22] Reiss, S. (2000). Who am I?-The 16 basic desires that motivate our actions and determine our personality.
[23] Pruitt, J., & Adlin, T. (2010). The persona lifecycle: keeping people in mind throughout product design. Morgan Kaufmann.
[24] Rönkkö, K., Hellman, M., Kilander, B., & Dittrich, Y. (2004, July). Personas is not applicable: local remedies interpreted in a wider context. In Proceedings of the eighth conference on Participatory design: Artful integration: interweaving media, materials and practices-Volume 1 (pp. 112-120). ACM.
[25] Tu, N., He, Q., Zhang, T., Zhang, H., Li, Y., Xu, H., & Xiang, Y. (2010, November). Combine qualitative and quantitative methods to create persona. In 2010 3rd International Conference on Information Management, Innovation Management and Industrial Engineering (Vol. 3, pp. 597-603). IEEE.
[26] Brickey, J., Walczak, S., & Burgess, T. (2012). Comparing semi-automated clustering methods for persona development. IEEE Transactions on Software Engineering, 38(3), 537-546.
[27] Chapman, C. N., Love, E., Milham, R. P., ElRif, P., & Alford, J. L. (2008, September). Quantitative evaluation of personas as information. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 52, No. 16, pp. 1107-1111). SAGE Publications.
[28] Tu, N., Dong, X., Rau, P., & Zhang, T. (2010, October). Using cluster analysis in persona development. In International Conference on Supply Chain Management and Information Systems.
[29] M. Almirall, J. Rivera, and L. Valverde, “Learning Contents in Mobile Scenarios,” Proc. Second Int’l Conf. Mobile, Hybrid, and On-Line Learning, pp. 151-157, 2010.
[30] Miller, J., & Doyle, B. A. (1987). Measuring the effectiveness of computer-based information systems in the financial services sector. MIS quarterly, 107-124.
[31] H. Javahery, A. Deichman, A. Seffah, and T. Radhakrishnan,“Incorporating Human Experiences into the Design Process of a Visualization Tool: A Case Study from Bioinformatics,” Proc. IEEE Int’l Conf. Systems, Man, and Cybernetics, pp. 1517-1523, 2007.