研究生: |
鄭孝信 Shiau-Shin Cheng |
---|---|
論文名稱: |
具有顯著飽和區之垂直有機電晶體 Vertical Organic Transistors with Pronounced Saturation Regions |
指導教授: |
吳孟奇
Meng-Chyi Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 48 |
中文關鍵詞: | 飽和區 、有機電晶體 、垂直型 、電流增益 |
外文關鍵詞: | saturaion region, organic thin film transistor, vertical type, current gain |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在這本論文中,將探討垂直式有機電晶體中的有機材料層替換。以pentacene為基底的水平式和垂直式有機電晶體將被討論。因為通道長度和材料低遷移率(mobility)的限制下,導致以源極/汲極上方接觸(top contact)的水平式有機電晶體出現高操作電壓。藉由減小通道長度,具有加強電洞注入的LiF層厚度和薄基極金屬厚度,垂直式的有機電晶體並存著有小於5伏特的驅動電壓和電流開關比大於102的特性 。由於元件在電流調制狀況下觀察到基極再結合(recombination)現象的增加,使得在共射極模式下觀察到較小的電流增益。雖然以pentacene為基底的高電流增益有機電晶體已經成功地被製造,但是在大氣環境下元件的穩定度仍然是個爭議。基於理解這項原因,具有相同結構以CuPc為基底的三極體發展不但可以證明元件結構是可以適用於替換各種有機材料而且改善元件的穩定度。因此,以CuPc為基底具有薄基極金屬可操作在飽和區的有機垂直式三極體可被研究。 用最佳化厚度0.4nm的LiF,元件在基極電流密度為-2.5 mA/cm2 和射極-汲極電壓為-5 V下,共射極電流增益為3.63可以被觀察到。在傳輸常數(α)趨近於1下,在共射極模式下被觀察到的小電流是因為非均勻電流導致電流減少。以CuPc為基底的元件和pentacene為基底的垂直式三極體比較下,由於CuPc 的電洞遷移率較低,所以其共射極電流增益也較小。架設一個用兩個以CuPc基底的Schottky二極體背對背(back-to-back) 具有不同基極金屬厚度的垂直式有機三極體特性,可以更一步研究薄鋁厚度對元件效果的影響。在輸出電流電壓特性下,垂直有機三極體存在一個平坦的飽和區。隨著基極鋁厚度增加而共射極的電流增益變小是因為在鋁金屬上開口孔洞減少導致在基極再結合(recombination)電流增加所造成。當汲極-射極電壓為-5V和基極電流密度為2.5 mA/cm2,元件鋁厚度為4.5nm,共射極的電流增益可達到1.9。
In this thesis, vertical organic transistors with alternate organic materials are investigated. Pentacene-based planar- and vertical-type organic thin film transistors (OTFTs) are investigated. High operation voltages are observed for the planar-type OTFTs with top source/drain electrodes, which results from the limitations of channel length and low material mobility. With a reduced channel length, a LiF hole-injection enhancement layer and a thin metal gate, the vertical-type pentacene OTFTs exhibit a low voltage operation of less than 5 V and a compatible on/off ratio of larger than 102. The smaller current gain observed from the device under current modulation is attributed to the increase of base recombination current under the common-emitter mode. Although pentacene-based vertical organic transistors with high current gain are successfully fabricated, the reliability of the devices under atmospheric ambient condition is still an issue. Based on the understandings, the development of CuPc-based triodes with similar device structures would not only prove the device structures suitable for alternate organic materials but also improve device reliability. Therefore, CuPc-based vertical organic triodes with thin metal base operation under saturation region are investigated. With an optimized LiF thickness of 0.4 nm, a common-emitter current gain of 3.63 is obtained for the device at JB = -2.5 mA/cm2 and VCE = -5 V. With a close-to-unity transport factor, the observed smaller current gain is attributed to the decrease of emitter current resulted from the non-uniform current flow under the common-emitter mode. Compared with pentacene-based vertical triodes, the CuPc-based devices exhibit a smaller common-emitter current gain resulted from its lower hole mobility. To futher investigate the influence of Al film thickness on the device performances, the characteristics of vertical organic triodes fabricated by using two copper phthalocyanine (CuPc) back-to-back Schottky diodes with different metal base thicknesses are fabricated. The vertical organic triodes exhibit pronounced saturation regions in the output current-voltage characteristics. The common-emitter current gain reduces with increasing the Al base thickness due to the increase of recombination current at the base end resulted from the reduction of opening voids in the Al metal film. The common-emitter current gain of the device with 4.5 nm thick Al base reaches 1.9 at VCE = –6 V and JB =2.5 mA/cm2.
1. D. J. Monsma, J. C. Lodder, T. J. A. Popma, and B. Dieny, “Perpendicular Hot Electron Spin-Valve Effect in a New Magnetic Field Sensor: The Spin-Valve Transistor”, Phys. Rev. Lett. 74, 5260 (1995)
2. H. Edzer, A. Huitema, G. H. Gelinck, J. Bas, P. H. van der Putten, K. E. Kuijk, K. M. Hart, E. Cantatore, and D. M. DeLeeuw,” Active-matrix displays driven by solution processed polymeric transistors”, Adv. Mater. 14, 1201 (2002).
3. C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, and T. N. Jackson, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates”, Appl. Phys. Lett. 80, 1088 (2002).
4. C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. deLeeuw,” Low-cost all-polymer integrated circuits”, Appl. Phys. Lett. 73, 108 (1998).
5. F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and C. Dehm,” Organic electronics on paper”, Appl. Phys. Lett. 84, 2673 (2004).
6. Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Pentacene-based organic thin-film transistors”, IEEE Trans. Electron Devices 44, 1325 (1997).
7. Tsumura, H. Koezuka, and T. Ando,”Macromolecular electronic device: Filed-effect transistor with a polythiophene thin film”, Appl. Phys. Lett. 49, pp. 1210-1212 (1998).
8. S. Fujimoto, K. Nakayama, and M. Yokoyama,” Fabrication of a vertical-type organic transistor with a planar metal base”, Appl. Phys. Lett. 87, 133503 (2005).
9. N. Stutzmann, R. H. Friend, and H. Sirringhaus, “Self-Aligned, Vertical-Channel, Polymer Field-Effect Transistors”, Science 299, 1881 (2003).
10. R. Parashkov, E. Becker, S. Hartmann, G. Ginev, D. Schneider, H. Krautwald, T. Dobbertin, D. Metzdorf, F. Brunetti, C. Schildknecht, A. Kammoun, M. Brandes, T. Riedl, H. H. Johannes, and W. Kowalsky,” Vertical channel all-organic thin-film transistors”, Appl. Phys. Lett. 82, 4579 (2003).
11. Y. Yang, and A. J. Heeger, “A new architecture for polymer transistors”, Nature 372, 344 (1994).
12. D. X. Wang, Y.Tanaka, M. Iizuka, S. Kuniyoshi, K. Kudo, and K. Kanaka, “Device Characteristics of Organic Static Induction Transistor Using Copper Phthalocyanime Films and Al Gate Electrode”, Jpn. J. Appl. Phys. 38, 256 (1999).
13. Y. Watanabe and K. Kudo, “Flexible organic static induction transistors using pentacene thin films”, Appl. Phys. Lett. 87, 223505 (2005).
14. M. D. Austin and S. Y. Chou, “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography,” Appl. Phys. Lett., vol. 81, no.23, pp. 4431-4433, Dec. 2002
15. Chuan-Yi Yang, Tzu-Min Ou, Shiau-Shin Cheng, Meng-Chyi Wu, Shih-Yen Lin, I-Min Chan, and Yi-Jen Chan, “Vertical Organic Triodes with a High Current Gain Operated in Saturation Region”, Appl. Phys. Lett., vol. 89, no. 18, pp. 183511, October 2006.
16. Tzu-Min Ou, Shiau-Shin Cheng, Chun-Yuan Huang, and Meng-Chyi Wu, I-Min Chan, Shih-Yen Lin and Yi-Jen Chan, “All-organic hot-carrier triodes with thin-film metal base”, Appl. Phys. Lett., vol. 89, no. 18, pp. 183508, October 2006.
17. L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode”, Appl. Phys. Lett., vol. 70, no. 2, pp. 152-154, November 1996.
18. Satoshi Hoshino, Shuichi Nagamatsu, Masayuki Chikamatsu, Masahiro Misaki, Yuji Yoshida, Nobutaka Tanigaki, and Kiyoshi Yase, “Device Performance of an n-Channel Organic Thin-Film Transistor with LiF/Al Bilayer Source and Drain Electrodes”, Jpn. J. Appl. Phys. Vol. 41, Part 2, No. 7A, pp. L 808–L 810, July 2002.
19. C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic thin film transistors for large area electronics,” Adv. Mater., vol. 14, no. 2, pp. 99-117, Jan. 2002.
20. Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Lett., vol. 18, no. 12, pp. 606-608, Dec. 1997
21. Y. C. Chao, S. L. Yang, H. F. Meng, and S. F. Horng, “Polymer hot-carrier transistor,” Appl. Phys. Lett., vol. 87, n o.25, pp. 253508, Dec. 2005
22. K. Kudo, M. Iizuka, S. Kuniyoshi, and K. Tanaka, ” Device characteristics of lateral and vertical type organic field effect transistors”, Thin Solid Films 393, 362 (2001).
23. K. Kude, DX. Wang, M. Iizuka, S. Kuniyoshi, and K. Tanaka, “Schottky gate static induction transistor using copper phthalocyanine films”, Thin Solid Films 331, pp51-54(1998)