研究生: |
黃柏盛 |
---|---|
論文名稱: |
手部靜態尺寸與功能性尺寸之對應關係-以抓握為例 Relationship between static hand dimensions and functional hand dimensions in grasping |
指導教授: | 王明揚 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 手部靜態尺寸 、手部功能性尺寸 、抓握 、舒適度 、握把直徑 、人體計測 |
外文關鍵詞: | static hand dimensions, functional hand dimensions, grasping, comfortability, handle diameter, anthropometry |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是探討人們抓握握把時,手部靜態與功能性尺寸轉換之間的關聯性,並藉由人體計測的量測方法,比較兩種尺寸轉換過程的變化,以建立手部靜態與功能性尺寸轉換的預測模型。研究方法分為兩個部份:第一部份為前測實驗,共有4位男性與4位女性參與,分別代表不同手長群體之受測者,以直接量測法量測各項手部尺寸,並透過主觀舒適度量表,與25, 30, 35, 40, 45及50 mm等六種握把直徑水準,了解握把直徑、受測者主觀舒適度與手部尺寸之間的關係。第二部份為正式實驗,共有15位男性與15位女性參與,每位受測者在手部體表參考點上黏貼標記物,以直接量測法與3D掃描量測法量測各項手部尺寸,並依照前測實驗結果,給予適合受測者手長的握把模型抓握(握把模型之直徑包含10 mm的油土厚度)。利用3D腳型量測儀掃描握把模型,並計算各標記點之間在抓握前後的變化量。
經過正式實驗後,得到以下重點結論,可供作未來手工具設計的參考:1.經由研究結果證實,本研究定義的標記點為手部靜態與功能性尺寸轉換之關鍵對應點。2.研究結果發現,在舒適且不用力緊握握把的情況下,12項手部靜態尺寸轉換成功能性尺寸的變化比例常數,其中四指的變化比例常數分別為:食指=0.3623、中指=0.4016、無名指0.3632、小指=0.3253。3.人的各項手部尺寸大小雖不同,但在舒適且不施力的情況下抓握,其變化比例卻是相同。本實驗排除其他可能影響手部尺寸變化的因子,僅就舒適度、握把直徑與手部尺寸等因子做探討,此乃本論文之研究限制。
The purpose of this thesis is to study the relationship between static hand dimensions and functional hand dimensions in grasping by means of the methods of anthropometry and to compare the variations of these two dimensions to make prediction models of hand dimensions. This study consists of two experiments. The first part is preliminary tests. In the first experiment there are 4 male and 4 female subjects, representing different hand length groups. Using the direct-measure method, subjective comfortability scale and 6 different handle diameters (25, 30, 35, 40, 45 and 50 mm) to find out the relationship among handle diameters, hand dimensions and subjective comfortability of subjects. There are 15 male and 15 female subjects in the second experiment and each subject is asked to paste with marks on the defined points on the hand. Each hand dimension is measured by means of the direct-measure method and 3D-scan method. According to the results of the first experiment, each subject is given a fit handle covered with 10 mm clay to grasp. After grasping, the handles will be scanned by the 3D scanner.
After the experiments, these conclusions are made.1. By the results, the 17 points defined in this study can be the key points between static hand dimensions and functional hand dimensions.2. When grasping the handles with comfort and without force, there are 12 constant ratios of variations between static hand dimensions and functional hand dimensions in grasping. For example, the constant ratio for index finger is 0.3623; for middle finger is 0.4016; for ring finger is 0.3632; for little finger is 0.3253. 3. Although one’s hand dimensions are different from another, the ratios between static hand dimensions and functional hand dimensions in grasping with comfort and without force are constant. Excluding the other factors such as force or angles of joints, this thesis only includes with factors, subjective comfortability, handle diameters and hand dimensions. This is the limitation of this thesis.
甘一婷,"台灣地區20至40歲成人體型變化之研究",國立清華大學碩士論文,新竹市,民92。
行政院勞工委員會勞工安全衛生研究所,"手工具使用危害性之調查研究",台北市,勞研所,民84。
行政院勞工委員會勞工安全衛生研究所,"人機介面安全衛生設計規範研究-非動力手工具與輔助設備",台北市勞研所,民85。
行政院勞工委員會勞工安全衛生研究所,"餐飲業勞工健康狀況及肌肉骨骼疾病之調查研究",台北市,勞研所,民91。
行政院勞工委員會勞工安全衛生研究所,"製造業上肢肌肉骨骼危害暴露研究",台北市,勞研所,民93。
吳揚程,"以模板法修補3D掃描人體表面資料之破洞",國立清華大學碩士論文,新竹市,民93。
吳健瓏,"學齡兒童使用鍵盤與滑鼠之相關手部人體計測",國立成功大學碩士論文,台南市,民91。
許勝雄、彭游、吳水丕,人因工程(第三版),台中市,滄海書局,民93。
張永忠,"應用3D人體掃描資料於靜態人體尺寸的擷取方法",國立清華大學碩士論文,新竹市,民90。
Ayoub, M. M. & Presti, P. L. (1971). The determination of an optimum size cylindrical handle by use of electromyography. Ergonomics 14(4), 509-518.
Bylund, S. H. & Burström, L. (2006). The influence of gender, handle size, anthropometry measures, and vibration on the performance of a precision task. International Journal of Industrial Ergonomics 36, 907-914.
Chang, S. R., Park, S. & Freivalds, A. (1999). Ergonomic evaluation of the effects of handle types on garden tools. International Journal of Industrial Ergonomics 24, 99-105.
Edgren, C. S., Radwin, R. G. & Irwin, C. B. (2004). Grip force vectors for varying handle diameters and hand sizes. Human factors 46(2), 244-251.
Wang, E. M. Y. & Wang, E. Y. N. (2003). A study on non-ergonomic design induced occupational injuries in Taiwan. National Tsing Hua University, Hsinchu, Taiwan.
Freivalds, A. (2004). Biomechanics of the upper limbs. CRC Press, 417-461.
Imrah, S. N. & Farahmand, K. (1999). Male torque strength in simulated oil rig tasks: the effects of grease-smeared gloves and handle length, diameter and orientation. Applied Ergonomics 30, 455-462.
Kroemer, K. H. E. (1986). Coupling the hand with handle: an improved notation of touch, grip, and grasp. Human Factors 28, 337-339.
Kong, Y. K. & Lowe, B. D. (2005). Optimal cylindrical handle diameter for grip force tasks. International Journal of Industrial Ergonomics 35, 495-507.
Kong, Y. K. & Lowe, B. D. (2003). Use of normal hand size for subjective rating and performance of handle diameter in maximum horizontal torque task. Proceeding of the Human Factors and Ergonomics Society 47th Annual Meeting, 1283-1287.
Kong, Y. K. & Lowe, B. D. (2003). Optimal handle size based on normalized hand size in a maximum vertical torque task. National Institute for Occupational Safety and Health, Cincinnati, USA
Mital, A. & Ramakrishnan A. (1999). A comparison of literature-based design recommendations and experimental capability data for a complex manual materials handling activity. International Journal of Industrial Ergonomics 24, 73-80.
Napier, J. R. (1956). The prehensile movements of the human hand. J Bone Joint Surg,53, 5-191.
Pheasant, S. & O’Neill, D. (1975). Performance in gripping and turning-A study in hand/handle effectiveness. Applied Ergonomics 6, 205-208.
Taylor, C. L. & Schwarz, R. J. 1955. The anatomy and mechanics of the human hand. Artificial Limbs, 2, 22-35.
Welcome, D., Rakheja, S., Dong, R., WU, J. Z. & Schopper, A. W. (2004). An investigation on the relationship between grip, push and contact forces applied to a tool handle. International Journal of Industry Ergonomics 34, 507-518.