簡易檢索 / 詳目顯示

研究生: 黎大維
Li, Da-Wei
論文名稱: 聚焦式超音波熱燒灼區域之超音波Nakagami參數造影
Ultrasound Nakagami Imaging of Focused-Ultrasound Induced Thermal Lesions
指導教授: 李夢麟
Li, Meng-Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 100
中文關鍵詞: Nakagami參數造影熱燒灼聚焦式超音波
外文關鍵詞: Nakagami imaging, thermal lesion, focused-ultrasound
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來非侵入式治療已受到相當的重視,其中高能聚焦式超音波(high intensity focused ultrasound,HIFU)所引發之局部熱燒灼治療是輔助性外科切除患部相當有潛力的新工具。但臨床醫生僅藉由傳統超音波B-mode影像不易判斷出加熱區域及加熱程度而增添醫療過程的危險性。在本研究中我們提出利用一種新式的超音波造影模式- Nakagami超音波參數造影 - 來即時偵測及監控高能聚焦式超音波熱燒灼區域。Nakagami超音波參數造影已被證實具有利用組織中的局部散射子在分佈、排列、濃度上的差異進行組織特徵化的能力,而我們推測當組織被加熱時,散射子的分佈、排列、濃度會隨著受熱而發生改變,而導致Nakagami參數發生變化,因此具有潛力對熱燒灼區域進行即時性偵測。實驗中藉由1.5MHz高能聚焦式超音波換能器對於離體組織進行熱燒灼,並以超音波成像系統擷取RF data,再透過Nakagami成像原理之演算法分析envelope data來形成Nakagami參數影像。本研究中也將Nakagami與其他3種參數MSS、IBS、RMS作比較。實驗結果顯示在無明顯氣泡產生的情況下,B-mode影像不易觀察燒灼區域,但透過Nakagami超音波參數造影,仍可在加熱過程中觀察到熱燒灼區域之位置,並且其燒灼前後參數影像間的對比較傳統B-mode影像來得好。至於在有明顯氣泡產生的情況下,其燒灼前後參數影像中找出的燒灼區域位置和大小與真實燒灼區域相當。另外,Nakagami超音波參數造影是在envelope data上作計算,故運算量相對很低,可以達到即時監控的目的。相較之下,利用其他MSS、IBS、RMS參數則無法正確得知燒灼位置及大小。未來工作將進一步利用Nakagami參數影像和超音波溫度、彈性影像比較甚至結合進行多參數影像來監控高能聚焦式超音波的熱燒灼,並延伸應用於高能聚焦式超音波產生熱燒灼機制的分類。


    中文摘要 I Abstract III 目錄 V 圖目錄 VIII 表目錄 XV 第1章 緒論 1 1.1 HIFU簡介 1 1.2 組織特徵化簡介 5 1.3 研究動機與目的 7 1.4 論文架構 9 第2章 Nakagami參數影像技術 11 2.1 技術簡介 11 2.2 Nakagami機率密度函數 12 2.3 Nakagami參數影像 16 2.3.1 Nakagami參數影像造影原理 16 2.3.2 Nakagami參數影像與B-mode影像之比較 22 2.3.3 假影( artifact )成因分析-----補丁(patch)與邊界(edge)假影 28 第3章 其他參數影像 34 3.1 MSS參數及造影原理 34 3.1.1 MSS參數簡介與cepstrum 34 3.1.2 MSS參數影像 37 3.2 IBS參數及造影原理 38 3.2.1 IBS參數簡介 38 3.2.2 IBS參數之定義與其等效模型 38 3.2.3 IBS參數影像 40 3.3 RMS參數及造影原理 42 第4章 離體豬肝組織的HIFU熱燒灼即時監控 44 4.1 實驗系統架構 44 4.2 實驗步驟 45 4.3 於監控時有明顯氣泡產生情況之實驗結果與討論 46 4.4 於監控時無明顯氣泡產生情況之實驗結果與討論 54 4.5 討論 59 第5章 結論與未來工作 71 5.1 結論 71 5.2 未來工作 73 5.2.1 與超音波溫度和彈性影像結合 73 5.2.2 Nakagami m 參數與溫度之關係 73 5.2.3 影像解析度改進 73 5.2.4 降低Nakagami m參數的variance 74 5.2.5 Nakagami於其他方面之應用 74 附錄A Nakagami參數影像假影消除方法的研究 76 A.1 演算法想法與流程 76 A.2 奧茲演算法、閉合(closing)處理輔助之Nakagami參數影像造影原理 79 附錄B MSS參數之電腦仿體模擬 92 參考文獻 98

    [1] ter Haar G. Therapeutic ultrasound. Eur J Ultrasound. 1999;9:3–9
    [2] S. Vaezy a, R. Martin, P. Mourad, and L. Crum, “Hemostasis using high intensity focused ultrasound,” European Journal of Ultrasound, Vol. 9, No. 11, pp. 79-87, 1999
    [3] H. Cline, J. F. Schenck, K. Hynynen, R. D. Watkins, S. P. Souza, and F.A. Jolesz, ‘‘Magnetic resonance guided focused ultrasound surgery,’’ J.Comput. Assist. Tomogr. 16, 956–965 1992.
    [4] K. Hynynen, A. Darkazanli, E. Unger, and J. F. Schenck, ‘‘MRI-guided noninvasive ultrasound surgery,’’ Med. Phys. 20, 107–115 1993
    [5] K. Hynynen, A. Darkazanli, C. Damianou, E. Unger, and J. F. Schenck,‘‘The usefulness of a contrast agent and gradient-recalled acquisition in a steady-state imaging sequence for magnetic resonance imaging-guided noninvasive ultrasound surgery,’’ Invest. Radiol. 29–10, 897–903 1994.
    [6] D. L. Parker, V. Smith, P. Sheldon, L. E. Crooks, and L. Fussell, ‘‘Temperature distribution measurements in two-dimensional NMR imaging,’’ Med. Phys. 10, 321–325 1983.
    [7] R. J. Dickinson, A. S. Hall, A. J. Hind, and I. R. Young, ‘‘Measurement of changes in tissue temperature using MR imaging,’’ J. Comput. Assist. Tomogr. 10, 468–472 1986
    [8] H. Cline, K. Hynynen, C. J. Hardy, R. D. Watkins, J. F. Schenck, and F. A. Jolesz, ‘‘MR temperature mapping of focused ultrasound surgery,’’ Magn. Reson. Med. 31, 628–636 1994.
    [9] R. Matsumoto, R. V. Mulkern, S. G. Hushek, and F. A. Jolesz, ‘‘Tissuetemperature monitoring for thermal interventional therapy: Comparison of T1-weighted MR sequences,’’ J. Magn. Reson. Imag. 4, 65–70 1994.
    [10] B. Kniittel, H. P. Juretschke, Temperature measurements by nuclear magnetic resonance and its possible use as a means of in vivo noninvasive temperature measurement and for hyperthermia treatment assessment. Recent Results Cancer Res. 101, 109-118 (1986)
    [11] J. L. Ackerman, L. C. Clark Jr, S. R. Thomas, R. G. Pratt, R. A. Kinsey, F. Becattini, NMR thermal imaging, in “Proc., SMRM, 3rd Annual Meeting, New York, 1984,” p. 1-2.
    [12] D. Le Bihan, J. Delannoy, and R. L. Levin, ‘‘Temperature mapping with MR imaging of molecular diffusion: Application to hyperthermia,’’ Radiology 171, 853–857 1989.
    [13] A.R. Bleier, F. A. Jolesz, M. S. Cohen, R. M. Weisskoff, J. J. Dalcanton, N. Higuchi, D. A. Feinberg, B. R. Rosen, R. C. McKinstry, and S. G. Hushek, ‘‘Real-time magnetic resonance imaging of laser heat deposition in tissue,’’ Magn. Reson. Med. 21, 132–137 1991
    [14] Y. Ishihara, A. Calderon, H. Watannabe, K. Mori, K. Okamoto, Y. Suzuki,K. Sato, K. Kuroda, N. Nakagawa, and S. Tsutsumi, ‘‘A precise and fast temperature mapping using water proton chemical shift,’’ Proc., SMRM, 11th Annual Meeting, Berlin, 4803 1992
    [15] J. C. Hindman, ‘‘Proton resonance shift of water in the gas and liquid states,’’ J. Chem. Phys. 44, 4582–4592 1966
    [16] K. Kuroda, K. Abe, S. Tsutsumi, Y. Ishihara, Y. Suzuki, and K. Sato,‘‘Water proton magnetic resonance spectroscopic imaging,’’ Biomed. Thermology 13, 43–62 1993.
    [17] Maass-Moreno R, Damianou CA. Noninvasive temperature estimation in tissue via ultrasound echo-shifts, Part I. Analytical model. J Acoust Soc Am 1996;100(4):2514–2521.
    [18] Maass-Moreno R, Damianou CA, Sanghvi NT. Noninvasive temperature estimation in tissue via ultrasound echo-shifts, Part II. In Vitro study. J Acoust Soc Am. 1996;100(4):2522–2530
    [19] Ophir J, Alam KA, Garra B, Kallel F, Konofagou EE, Krouskop TA, Varghese T. Elastography. Ultrasonic estimation and imaging of the elastic properties of tissues. Proceedings of the Institution of Mechanical Engineers, Part H J. Eng Med 1999;213:203–233.
    [20] Ophir J, Ce’spedes EI, Ponnekanti H, Yazdi Y, Li X. Elastography. A quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging 1991;13:111–134.
    [21] P. M. Shankar, “A general statistical model for ultrasonic scattering from tissues,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 47, no. 3, pp. 727–736, May 2000.
    [22] L. Fellingham and F. Sommer, Ultrasonic characterization of tissue structure in the in vivo human liver and spleen, IEEE Trans on Sonics and Ultrasonics, vol. 31, pp. 418–428, July 1984.
    [23] K. Suzuki, N. Hayashi, Y. Sasaki, M. Kono, Y. Imai, H. Fusamoto, and T. Kamada, Ultrasonic tissue characterization of chronic liver disease using cepstral analysis, Gastroenterology, vol. 101, no. 5, pp. 1325–1331, November 1991
    [24] B. Garra, M. Insana, T. Shawker, R. Wagner, M. Bradford, and M. Russell, Quantitative ultrasonic detection and classification of diffuse liver disease, comparison with human observer performance, Invest Radiol, vol. 24, pp. 196–203, March 1989
    [25] B. Garra, M. Insana, I. Sesterhenn, T. Hall, R. Wagner, C. Rotellar, J. Winchester, and R. Zeman, Quantitative ultrasonic detection of parenchymal structural change in diffuse renal disease, Invest Radiol, vol. 29, no. 2, pp. 134–140, February 1994
    [26] Liu XZ, Li JL, Gong XF, Zhang D. Nonlinear absorption in biological tissue for high intensity focused ultrasound. Ultrasonics 2006;44: e27–e30
    [27] Lizzi FL, Muratore R, Deng CX, Ketterling JA, Alam SK, Mikaelian S, Kalisz A. Radiation-force technique to monitor lesions during ultrasonic therapy. Ultrasound Med Biol 2003;29:1593–1605
    [28] Simon C, VanBaren P, Ebbini ES. Two-dimensional temperature estimation using diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 1998;45:1088–1099
    [29] Wang, TY; Xu, Z; Winterroth, F, et al.”Quantitative Image Feedback for Pulsed Cavitational Ultrasound Therapy-Histotripsy” 2008 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4 AND APPENDIX ,pp 867-870 ,2008
    [30] S. A. Goss, R. L. Johnston, and F. Dunn, “Comprehensive compilation of empirical ultrasonic properties of mammalian tissues,"J. Acoust. Soc. Amer., vol. 64, pp. 423-457, 1978
    [31] P. A. Harper, E. Kelly-Fry, J. S. Noe, J. R. Bies, and V. P. Jackson,“Ultrasound evaluation of solid breast masses," Radiology,vol. 146, pp. 731-736, 1983
    [32] R. F.Wagner, S.W. Smith, J. M. Sandrik, and H. Lopez, “Statistics of speckle in ultrasound B-scans," IEEE Trans., vol. SU-30,pp. 156-163, 1986
    [33] R. F. Wagner, M. F. Insane, and D. G. Brown, “Statistical properties of radio-frequency and envelope detected signals with applications to medical ultrasound," J. Opt. Soc. Amer. A, vol. 4, pp. 910-922, 1987
    [34] T. A. Tuthil, R. H. Sperry, and K. J. Parker, “Deviation from Rayleigh statistics in ultrasonic speckle," Ultrason. Imag., vol.10, pp. 81-89, 1988
    [35] P. M. Shankar, “A model for ultrasonic scattering from tissues based on K-distribution," Phys. Med. Biol., vol. 40, pp. 1633-1649, 1995
    [36] R. C. Molthen, P. M. Shankar, and J.M. Reid, “Characterization of ultrasonic B-scans using non-Rayleigh statistics," Ultrasound Med. Biol., vol. 21, no. 2, pp. 161-170, 1995
    [37] V. M. Narayanan, P. M. Shankar, and J. M. Reid, “Non-Rayleigh statistics of ultrasonic back scattered signals," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 41, no. 6, pp. 845-852, Nov. 1994
    [38] V. Dutt and J. F. Greenleaf,”Ultrasound echo envelope analysis using a homodyned K distribution signal model," Ultrason. Imag., vol. 16, pp. 265-287, 1994
    [39] Shankar PM, Dumane VA, Reid JM, Genis V, Forsberg F, Piccoli CW, Goldberg BB. Classification of ultrasonic B-mode images of breast masses using Nakagami distribution. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 2001;48:569-580
    [40] Tsui PH, Chang CC. Imaging local scatterer concentrations by the Nakagami statistical model, Ultrasound Med Biol 33, 608–619 (2007)
    [41] Tomy Varghese, and K. D. Donohue, "Mean scatterer spacing estimates with spectral correlation", Journal Acoustic Society America, Vol. 96, No. 6, pp. 3504-3515, 1994
    [42] Lizzi, F.L., Feleppa, E.J., Yaremko, N., King, D.L. Wai, P., 1981. Liver-tissue characterization by digital spectrum and cepstrum analysis. In: Proc. of the IEEE Ultrasonics Symposium, Institute of Electrical and Electronics Engineers, pp. 575-578
    [43] Haykin and Van Veen, “Signals and Systems,” 2nd Edition, Wiley, 2003
    [44] Siyuan Zhang, Mingxi Wan, Hui Zhong, Cheng Xu, Zhenzhong Liao, Huanqing Liu, Supin Wang, “Dynamic Changes of Integrated Backscatter, Attenuation Coefficient and Bubble Activities During High-Intensity Focused Ultrasound (HIFU) Treatment”, Ultrasound in Med. & Biol., Vol. 35, No. 11, pp. 1828–1844, 2009
    [45] Bush NL, Rivens I, ter Haar GR, Bamber JC. Acoustic properties of lesions generated with an ultrasound therapy system. Ultrasound Med Biol 1993;19:789–801
    [46] Gertner MR, Wilson BC, Sherar MD. Ultrasound properties of liver tissue during heating. Ultrasound Med Biol 1997;23:1395–1403
    [47] Worthington AE, Sherar MD. Changes in ultrasound properties of porcine kidney tissue during heating. Ultrasound Med Biol 2001; 27:673–682
    [48] Clarke RL, Bush NL, ter Haar GR. The changes in acoustic attenuation due to in vitro heating. Ultrasound Med Biol 2003;29:127–135
    [49] Towa RT, Miller RJ, Frizzell LA, Zachary JF, O’Brien WD Jr. Attenuation coefficient and propagation speed estimates of rat and pig intercostal tissue as a function of temperature. IEEE Trans Ultrason Ferroelectr Freq Control 2002;49:1411–1420
    [50] Waters K, Bacrie CC, Levrier C, et al. In vitro characterization of carotid plaque using a clinical ultrasound imaging system. Proc IEEE Ultrason Sympos 2001;2:1197–1200
    [51] Walach E, Shmulewitz A, Itzchak Y, Heyman Z. Local tissue attenuation images based on pulsed-echo ultrasound scans. IEEE Trans Biomed Eng 1989;36(2):211–221
    [52] Zhong H, Wan MX, Jiang YF, Wang SP. Monitoring imaging of lesions induced by high intensity focused ultrasound based on differential ultrasonic attenuation and integrated backscatter estimation. Ultrasound Med Biol 2007;33:82–94
    [53] 林奕勳, 以高頻超音波逆散射訊號及統計參數評估燒燙傷組織的癒合,中原大學,碩士論文,民國96年
    [54] Julian Cheng, Beaulieu, N.C. “Maximum-likelihood based estimation of the Nakagami m parameter, “ IEEE Communications Letters, vol. 5, no. 3, pp. 101-103, Mar 2001

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE