研究生: |
謝宗倫 Xie, Zong-Lun |
---|---|
論文名稱: |
密度泛函理論研究氫溢流機制利用鉑/石墨烯和鉑/二氧化鈦催化劑應用於儲氫系統 Density functional theory study of hydrogen spillover mechanism on Pt/Graphene & Pt/TiO2 catalysts applied to hydrogen storage |
指導教授: |
陳馨怡
Chen, Hsin-Yi Tiffany 曾繁根 Tseng, Fan-Gang |
口試委員: |
郭錦龍
Kuo, Chin-Lung 邢正蓉 Hsing, Cheng-Rong |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 氫溢流機制 、密度泛函理論 、鉑 、石墨烯 、銳鈦礦二氧化鈦(101) 、氫吸附 |
外文關鍵詞: | Hydrogen spillover mechanism, DFT, Pt, Graphene, TiO2, Hydrogen adsorption |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
儲氫量的的提升是實現氫經濟關鍵的阻礙之一,美國能源局(DOE)的目標是在2020年達到環境壓力和溫度下氫存儲材料重量分別為4.5wt%和H2的體積密度為30kg H2 / m3。我們團隊使用密度泛函理論將根據氫的吸附來設計合適的金屬修飾於石墨烯/銳鈦礦二氧化鈦(101)材料,但我們關注的是透過使用模型催化劑Pt4/銳鈦礦二氧化鈦(101)和Pt4/石墨烯吸附氫氣進而增強氫溢流機制,在不同的氫覆蓋條件下。我們的結果意指,Pt4 /石墨烯體系中氫溢流發生可能在高氫氣覆蓋的情形下且氫與鉑的比例為六比一,這與一般的氫溢流機制這與一般的氫溢流機制相一致。不同的是,在有Pt4存在下吸附氫原子在銳鈦礦二氧化鈦(101)表面其吸附能比氫原子吸附銳鈦礦二氧化鈦(101)表面強0.48 eV,關於Pt4/銳鈦礦二氧化鈦(101)的氫溢流機制,我們注意到在些許氫氣的覆蓋且氫與鉑的比例為二點五比一的情形下,氫可以從金屬顆粒溢流於銳鈦礦二氧化鈦(101)表面上。
關鍵字:氫溢流機制,密度泛函理論,鉑,石墨烯,銳鈦礦二氧化鈦(101),氫吸附
Storing hydrogen is one of the pivotal hurdles to achieve hydrogen economy from the use of fossil fuels. The U.S. Department of Energy (DOE) aims at reaching the gravimetric H2 density of 4.5wt% and volumetric H2 density of 30kg H2/m3 in 2020 for hydrogen storage materials at the ambient pressure and temperature. Our role (theoretical team by using Density Function Theory, DFT) is to design appropriate metal-decorated graphene-based materials in term of generation, adsorption and desorption of hydrogen, but focusing to enhance the hydrogen spillover mechanism, hydrogen adsorption by using the model catalysts, Pt4/anatase TiO2 (101) and Pt4/Graphene in the conditions of different hydrogen coverage. The outcomes implies that hydrogen spillover in Pt4/Graphene system might be able to occurs at high hydrogen converage with the H:Pt ration = 6:1 that is in agreement with general hydrogen spillover mechanism. Different is that the magnitude of single hydrogen atom adsorption energy on anatase TiO2 (101) is enhanced 0.48 eV in the presence of Pt4. Concerning hydrogen spillover mechanism in Pt4/TiO2 system, we note hydrogen could spill over from the metal particle to TiO2 support at mediate hydrogen coverage with H:Pt ration = 2.5: 1.
Keywords: Hydrogen spillover mechanism, DFT , Pt ,Graphene,TiO2 , Hydrogen adsorption .
[1] "CHEMISTRY(THE CHINESE CHEM. SOC., TAIPEI)December. 2003 Vol. 61, No. 4, pp.585~597 ".
[2] 經濟部能源局. (2007). 我國重點能源科技研發動向與策略.
[3] J. Rubio, S. Zurita, J. Barthelat, and F. Illas, "Electronic and geometrical structures of Pt3 and Pt4. An ab initio one-electron proposal," Chemical physics letters, vol. 217, pp. 283-287, 1994.
[4] K. Okazaki-Maeda, Y. Morikawa, S. Tanaka, and M. Kohyama, "Structures of Pt clusters on graphene by first-principles calculations," Surface Science, vol. 604, pp. 144-154, 2010.
[5] Y. Han, C.-j. Liu, and Q. Ge, "Interaction of Pt clusters with the anatase TiO2 (101) surface: A first principles study," The Journal of Physical Chemistry B, vol. 110, pp. 7463-7472, 2006.
[6] K. Nakada and A. Ishii, "DFT calculation for adatom adsorption on graphene," in Graphene Simulation, ed: InTech, 2011.
[7] D. Henwood and J. D. Carey, "Ab initio investigation of molecular hydrogen physisorption on graphene and carbon nanotubes," Physical Review B, vol. 75, p. 245413, 2007.
[8] M. M. Islam, M. Calatayud, and G. Pacchioni, "Hydrogen adsorption and diffusion on the anatase TiO2 (101) surface: a first-principles investigation," The Journal of Physical Chemistry C, vol. 115, pp. 6809-6814, 2011.
[9] C. Ramos-Castillo, J. Reveles, R. Zope, and R. De Coss, "Palladium clusters supported on graphene monovacancies for hydrogen storage," The Journal of Physical Chemistry C, vol. 119, pp. 8402-8409, 2015.
[10] H.-Y. T. Chen, S. Tosoni, and G. Pacchioni, "Hydrogen adsorption, dissociation, and spillover on Ru10 clusters supported on anatase TiO2 and tetragonal ZrO2 (101) surfaces," ACS Catalysis, vol. 5, pp. 5486-5495, 2015.
[11] S. Khoobiar, "Particle to particle migration of hydrogen atoms on platinum—alumina catalysts from particle to neighboring particles," The Journal of Physical Chemistry, vol. 68, pp. 411-412, 1964.
[12] W. Karim, C. Spreafico, A. Kleibert, J. Gobrecht, J. VandeVondele, Y. Ekinci, et al., "Catalyst support effects on hydrogen spillover," Nature, vol. 541, p. 68, 01/04/online 2017.
[13] A. J. Lachawiec, G. Qi, and R. T. Yang, "Hydrogen Storage in Nanostructured Carbons by Spillover: Bridge-Building Enhancement," Langmuir, vol. 21, pp. 11418-11424, 2005/11/01 2005.
[14] H.-Y. T. Chen, "Hydrogenation Reaction Catalysed by Organometallic Complexs." University College London Ph D 2011
[15] "Hands-on tutorial course on VASP. Available from: https://www.vasp.at/vasp-workshop/.".
[16] "Fermi, E., "Un metodo statistico per la determinazione di alcune priorietà dell'atome." Rend. Accad. Naz. Lincei. 6, 1927, p. 602-607.."
[17] "Thomas, L., "The calculation of atomic fields." Proceedings of the Cambridge Philosophical Society. 23, 1927, p. 542-548.."
[18] "Hohenberg, P. and W. Kohn, "Inhomogeneous Electron Gas." Physical Review. 136, 1964, p. B864-B871.."
[19] "Born-Oppenheimer approximation. Available from: https://en.wikipedia.org/wiki/Born%E2%80%93Oppenheimer_approximation."
[20] "M., B. and O. R., "Zur Quantentheorie der Molekeln." Annalen der Physik. 389, 1927, p. 457–484. ."
[21] "Density functional theory. Available from: https://en.wikipedia.org/wiki/Density_functional_theory."
[22] "Kohn, W. and L.J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects." Physical Review. 140, 1965, p. A1133-A1138."
[23] "Kohn–Sham equation. Available from: https://en.wikipedia.org/wiki/Kohn%E2%80%93Sham_equations."
[24] "Local-density approximation. Available from: https://en.wikipedia.org/wiki/Local-density_approximation."
[25] "Perdew, J.P. and A. Zunger, "Self-interaction correction to density-functional approximations for many-electron systems." Physical Review B. 23, 1981, p. 5048-5079. ."
[26] "Cole, L.A. and J.P. Perdew, "Calculated electron affinities of the elements." Physical Review A. 25, 1982, p. 1265-1271.."
[27] "Gell-Mann, M. and K.A. Brueckner, "Correlation Energy of an Electron Gas at High Density." Physical Review. 106, 1957, p. 364-368. ."
[28] "Dirac, P., "Note on exchange phenomena in the Thomas atom." Proceedings of the Cambridge Philosophical Society. 26, 1930, p. 376-385.."
[29] "Parr, R.G. and W. Yang, "Density-Functional Theory of Atoms and Molecules." 1994.."
[30] "Ceperley, D.M. and B.J. Alder, "Ground State of the Electron Gas by a Stochastic Method." Physical Review Letters. 45, 1980, p. 566-569.."
[31] "Perdew, J.P., K. Burke, and Y. Wang, "Generalized gradient approximation for the exchange-correlation hole of a many-electron system." Physical Review B. 54, 1996, p. 16533-16539.."
[32] "Perdew, J.P., "Density-functional approximation for the correlation energy of the inhomogeneous electron gas." Physical Review B. 33, 1986, p. 8822-8824.."
[33] "Perdew, J.P. and Y. Wang, "Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation." Physical Review B. 33, 1986, p. 8800-8802.."
[34] "Becke, A.D., "Density-functional exchange-energy approximation with correct asymptotic behavior." Physical Review A. 38, 1988, p. 3098-3100.."
[35] "Langreth, D.C. and M.J. Mehl, "Beyond the local-density approximation in calculations of ground-state electronic properties." Physical Review B. 28, 1983, p. 1809-1834.."
[36] "Perdew, J.P., et al., "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation." Physical Review B. 46, 1992, p. 6671-6687.."
[37] "Perdew, J.P., K. Burke, and M. Ermzerhof, "Generalized Gradient Approximation Made Simple." Physical Review Letters. 77, 1996, p. 3865-3868.."
[38] "Pseudopotential. Available from: https://en.wikipedia.org/wiki/Pseudopotential."
[39] "Potential energy surface. Available from: https://en.wikipedia.org/wiki/Potential_energy_surface.."
[40] "Hessian matrix. Available from: https://en.wikipedia.org/wiki/Hessian_matrix."
[41] C. R. Rêgo, P. Tereshchuk, L. N. Oliveira, and J. L. Da Silva, "Graphene-supported small transition-metal clusters: a density functional theory investigation within van der Waals corrections," Physical Review B, vol. 95, p. 235422, 2017.
[42] C. I. Morgade, C. I. Vignatti, M. S. Avila, and G. F. Cabeza, "Theoretical and experimental analysis of the oxidation of CO on Pt catalysts supported on modified TiO2 (101)," Journal of Molecular Catalysis A: Chemical, vol. 407, pp. 102-112, 2015.
[43] D. Boukhvalov, M. Katsnelson, and A. Lichtenstein, "Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations," Physical Review B, vol. 77, p. 035427, 2008.
[44] F. Costanzo, P. Silvestrelli, and F. Ancilotto, "Physisorption, Diffusion, and Chemisorption Pathways of H2 Molecule on Graphene and on (2, 2) Carbon Nanotube by First Principles Calculations," Journal of chemical theory and computation, vol. 8, pp. 1288-1294, 2012.
[45] I. López-Corral, S. Piriz, R. Faccio, A. Juan, and M. Avena, "A van der Waals DFT study of PtH2 systems absorbed on pristine and defective graphene," Applied Surface Science, vol. 382, pp. 80-87, 2016.