簡易檢索 / 詳目顯示

研究生: 胡平鎧
Hu, Ping-Kai
論文名稱: 以非連續群擴展的暗物質模型
A Dark Matter Model with Discrete Symmetry Extension
指導教授: 耿朝強
Geng, Chao-Qiang
李靈峰
Li, Ling-Fong
口試委員: 耿朝強
張維甫
何小剛
林貴林
楊毅
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 28
中文關鍵詞: 暗物質非連續群
外文關鍵詞: dark matter, discrete symmetry
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用非連續群擴展建立了一個暗物質模型。不同於過去常使用的$ Z_2 $對稱性,這個模型容許兩種暗物質存在。我們討論它的現象以及探測到其暗物質粒子的可能性。同時這個模型有機會解釋暗物質間的交互作用。


    We build up a simple model for dark matter problem with discrete symmetry extension. Different from the $ Z_2 $ symmetry extension which is frequently used, this model allow two dark matter to exist. We discuss its phenomena and possibility to detect the dark matter candidate. And this model might be helpful to explain the self-interacting dark matter.

    Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . 4 2 Model . . . . . . . . . . . . . . . . . . . . . 5 2.1 Z3 symmetry . . . . . . . . . . . . . . . . . . . . . 5 2.2 S3 symmetry . . . . . . . . . . . . . . . . . . . . . 6 2.3 O(2) symmetry . . . . . . . . . . . . . . . . . . . . . 7 3 Cosmological constraint . . . . . . . . . . . . . . . . . . . . . 8 3.1 Boltzmann equation . . . . . . . . . . . . . . . . . . . . . 8 3.2 Annihilation cross-section . . . . . . . . . . . . . . . . . . . . . 11 3.3 Freeze-out temperature . . . . . . . . . . . . . . . . . . . . . 12 4 Detection . . . . . . . . . . . . . . . . . . . . . 15 4.1 Direct detection . . . . . . . . . . . . . . . . . . . . . 15 4.2 Indirect detection . . . . . . . . . . . . . . . . . . . . . 18 5 Phenomena in collider . . . . . . . . . . . . . . . . . . . . . 22 5.1 The mh > 2mφ case . . . . . . . . . . . . . . . . . . . . . 22 5.2 The mh < 2mφ case . . . . . . . . . . . . . . . . . . . . . 23 6 Conclusions . . . . . . . . . . . . . . . . . . . . . 24

    [1] Andreas Birkedal, Andrew Noble, Maxim Perelstein, and Andrew Spray. Little higgs
    dark matter. Phys. Rev. D, 74:035002, Aug 2006.
    [2] Vanda Silveira and A. Zee. Scalar phantoms. Phys.Lett., B161:136, 1985.
    [3] M.J.G. Veltman and F.J. Yndurain.
    Nucl.Phys., B325:1, 1989.
    Radiative corrections to w w scattering.
    [4] John McDonald. Gauge singlet scalars as cold dark matter. Phys.Rev., D50:3637–
    3649, 1994.
    [5] C.P. Burgess, Maxim Pospelov, and Tonnis ter Veldhuis. The minimal model of
    nonbaryonic dark matter: A singlet scalar. Nucl.Phys., B619:709–728, 2001.
    [6] David N. Spergel and Paul J. Steinhardt. Observational evidence for self-interacting
    cold dark matter. Phys. Rev. Lett., 84:3760–3763, 2000.
    [7] Edward W. Kolb and Michael S. Turner. The early universe. Front.Phys., 69:1–547,
    1990.
    [8] A. Djouadi, J. Kalinowski, and M. Spira. Hdecay: A program for higgs boson decays
    in the standard model and its supersymmetric extension. Comput.Phys.Commun.,
    108:56–74, 1998.
    [9] Greg W. Anderson and Lawrence J. Hall. Electroweak phase transition and baryo-
    genesis. Phys. Rev. D, 45:2685–2698, Apr 1992.
    [10] The ATLAS Collaboration. Combination of higgs boson searches with up to 4.9
    fb-1 of pp collisions data taken at a center-of-mass energy of 7 tev with the atlas
    experiment at the lhc. Technical Report ATLAS-CONF-2011-163, CERN, Geneva,
    Dec 2011.
    [11] The CMS Collaboration. Combination of sm higgs searches. Technical Report CMS-
    PAS HIG-11-032, CERN, Geneva, Dec 2011.
    [12] Ofer Lahav and Andrew R Liddle. The cosmological parameters 2010. 2010.
    [13] J.F. Donoghue, E. Golowich, B.R. Holstein, J.F. Donoghue, E. Golowich, and B.R.
    Holstein. Dynamics of the standard model, volume 2. Cambridge Univ Pr, 1994.
    [14] Z. Ahmed et al. Results from a low-energy analysis of the cdms ii germanium data.
    Phys.Rev.Lett., 106:131302, 2011.
    [15] C.E. Aalseth et al. Results from a search for light-mass dark matter with a p-type
    point contact germanium detector. Phys.Rev.Lett., 106:131301, 2011.
    [16] E. Armengaud et al. Final results of the edelweiss-ii wimp search using a 4-kg array
    of cryogenic germanium detectors with interleaved electrodes. Phys.Lett., B702:329–
    335, 2011.
    [17] Z. Ahmed et al. Combined limits on wimps from the cdms and edelweiss experiments.
    Phys.Rev., D84:011102, 2011.
    [18] J. Angle et al. A search for light dark matter in xenon10 data. Phys.Rev.Lett.,
    107:051301, 2011.
    [19] D.Yu. Akimov, H.M. Araujo, E.J. Barnes, V.A. Belov, A. Bewick, et al. Wimp-
    nucleon cross-section results from the second science run of zeplin-iii. Arxiv preprint
    arXiv:1110.4769, 2011.
    [20] Paul L. Brink et al. Beyond the cdms-ii dark matter search: Supercdms. eConf,
    C041213:2529, 2004.
    [21] Elena Aprile. The xenon100 dark matter experiment at lngs: Status and sensitivity.
    J.Phys.Conf.Ser., 203:012005, 2010.
    [22] G. Steigman, C.L. Sarazin, H. Quintana, and J. Faulkner. Dynamical interactions and
    astrophysical effects of stable heavy neutrinos. The Astronomical Journal, 83:1050–
    1061, 1978.
    [23] Alon E. Faraggi, Keith A. Olive, and Maxim Pospelov. Probing the desert with
    ultraenergetic neutrinos from the sun. Astropart.Phys., 13:31–43, 2000.
    [24] Mark Srednicki, Keith A. Olive, and Joseph Silk. High-energy neutrinos from the
    sun and cold dark matter. Nucl.Phys., B279:804, 1987.
    [25] William H. Press and David N. Spergel. Capture by the sun of a galactic population
    of weakly interacting massive particles. Astrophys.J., 296:679–684, 1985.
    [26] K. Griest and D. Seckel. Cosmic asymmetry, neutrinos and the sun. Nucl.Phys.,
    B283:681, 1987.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE