簡易檢索 / 詳目顯示

研究生: 黃振浩
Chen-Hao Huang
論文名稱: 高介電閘層金氧半電晶體之界面缺陷與氧化層電荷分佈量測研究
Measurements of Interface Traps and Depth Profiling of Border Traps in MOSFETs with High-K Gate Dielectrics
指導教授: 張廖貴術
Kuei-Shu Chang-Liao
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 141
中文關鍵詞: 高介電邊緣缺陷界面缺陷密度分佈縱深分佈氧化層電荷高介電閘層金氧半電晶體電荷汲引高低頻轉導
外文關鍵詞: Border Traps, Interface Trap density distribution, Depth Profiling, oxide charge, High-K MOSFET, Charge Pumping, High-Low Frequency transconductance
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在元件閘極氧化層厚度快速縮小的趨勢下,氧化層厚度薄至25□以下時元件會因為直接穿遂效應而產生很大的閘極漏電流,因此,尋找高介電係數(High-K)閘極介電層以替代原先二氧化矽介電層,是當今非常重要的一個課題。然而在材料替換的過程中,許多問題產生,如電荷捕獲(charge trapping),臨界電壓(threshold voltage)飄移,載子遷移率(mobility)下降等,因此應用在高介電係數閘極介電層電晶體的界面缺陷(interface traps)及氧化層缺陷(oxide traps)可靠度分析因應而生。本論文主要是觀察High-K介電層與矽基板之間的邊緣缺陷,其包含了界面缺陷和氧化層電荷。
    第一部分是High-K介電層金氧半電晶體的界面缺陷密度分佈量測:我們採用了電荷汲引量測技術及高低頻轉導量測技術,藉由這兩種量測技術以觀察在能隙中不同能量的界面缺陷密度分佈,及以電荷分離方法比較,以做為元件的可靠度評估。
    第二部份是High-K介電層金氧半電晶體的氧化層電荷縱向深度分佈量測:不同於以往的材料分析方式,我們採用了低頻閘極脈衝的電荷汲引量測技術,利用這樣的量測方式可以探得界面與氧化層中間不完美的鍵結,並且觀察氧化層電荷對臨界電壓的影響。


    第一章 緒論_________________________________________________ 1.1 研究動機...........................................1 1.2 高介電係數材料的選擇...............................1 1.3 高介電常數鉿氧氮化物(HfON)介電層...................3 1.4 強大的量測工具-電荷汲引技術.......................3 1.5 研究概要...........................................4 第二章 金氧半電晶體元件量測損傷技術_________________________ 2.1 簡述界面缺陷密度及氧化層電荷密度...................6 2.2 電荷分離技術(Charge Separation)..................8 2.2.1電荷分離技術的方式與原理..........................8 2.2.2利用電荷分離量測電晶體受到電應力所造成損害........8 2.3 電荷汲引技........................................11 2.3.1電荷汲引的方式及原理.............................11 2.3.2電荷汲引電流量測裝置及設定........................13 2.4 利用電荷汲引曲線觀察電晶體受到電應力所造成損害.....16 2.4.1 F-N stress對High-K電晶體的損害..............16 2.4.2 Hot Carrier Injection對High-K電晶體的損害...17 2.5 界面缺陷密度的量測方法介紹........................18 2.5.1金氧半電容結構求取界面缺陷密度分佈...........18 2.5.2電晶體結構求取界面缺陷密度分佈....................20 2.6 結論...............................22 第三章 高介電係數閘極介電層電晶體界面缺陷密度分佈量測技術__ 3.1 前言介紹與量測程序...........................37 3.2電荷汲引技術萃取界面缺陷密度分佈的設定及原理.........39 3.2.1電荷汲引技術萃取界面缺陷密度分佈的量測裝置設定.....39 3.2.2電荷汲引技術萃取界面缺陷密度分佈的原理.............39 3.3電荷汲引技術萃取SiO2電晶體界面缺陷密度分佈...........41 3.3.1量測公式及步驟.................................41 3.3.2量測原理及技術...........................42 3.3.3量測結果.....................................44 3.3.4 SiO2電晶體經過電應力後的界面缺陷密度分佈..........45 3.3.5量測SiO2電晶體在不同頻率下其界面缺陷密度對能量的分佈45 3.4電荷汲引技術萃取High-K電晶體界面缺陷密度分佈.........47 3.4.1量測公式及步驟........................47 3.4.2量測技術及原理..................................49 3.4.3量測結果................................50 3.4.4 High-K電晶體經過電應力後的界面缺陷密度分佈........51 3.4.5量測High-K電晶體在不同頻率下其界面缺陷密度對能量的分 佈....51 3.5當High-K電晶體其閘極輸入脈衝過長的問題..............52 3.6結論.................................................53 第四章 邊緣界面缺陷密度縱向深度分佈萃取技術_______________ 4.1前言介紹與量測方法.....................74 4.1.1研究動機.....................74 4.1.2量測方法........................75 4.2量測元件與裝置設定.........................77 4.3頻率斷點法..........................78 4.3.1量測公式及步驟..................78 4.3.2量測技術與原理.....................79 4.3.3量測計算與結果.....................81 4.4捕抓截面法................................83 4.4.1量測公式及步驟...................83 4.4.2量測技術與原理......................84 4.4.3量測計算與結果...........................85 4.5從電荷汲引曲線觀察邊緣缺陷....................87 4.5.1邊緣缺陷對電荷汲引曲線的影響..................87 4.5.2操作頻率對臨界電壓的影響......................87 4.6結論................................................89 第五章 高低頻轉導技術應用於金氧半電晶體的界面缺陷特性研究__ 5.1前言介紹與量測程序......................105 5.2高低頻轉導法萃取界面缺陷密度分佈的設定及原理........106 5.3高低頻轉導法萃取SiO2電晶體界面缺陷密度分佈.........106 5.3.1量測公式及原理......................106 5.3.2量測技術........................108 5.3.3量測結果..................108 5.3.4SiO2電晶體經過電應力後的界面缺陷密度分佈........109 5.3.5SiO2電晶體利用電荷汲引法、電荷分離法及高低轉導法經電 電荷增加量差異............................110 5.3.6SiO2電晶體利用高低頻轉導法與電荷汲引法所得到的界面缺 陷密度分佈差異.............111 5.4高低頻轉導法萃取High-K電晶體界面缺陷密度分佈.......113 5.4.1量測原理及技術..............113 5.4.2量測結果...........................114 5.4.3High-K電晶體利用電荷汲引法、電荷分離法及高低轉導法經 電應力後的界面缺陷電荷增加量差................114 5.4.4High-K電晶體利用高低頻轉導法與電荷汲引法所得到的界面 缺陷密度分佈差異....................116 5.5結論.............................117 第六章 結論與建議 _____________________________________ 6.1 結論...................................133 6.2 未來工作與建議.................................134 參考文獻_____________________________________________136

    [1] Xuguang Wang, Jun Liu, Feng Zhu, Naoki Yamada, and Dim-Lee Kwong, “A Simple Approach to Fabrication of High-Quality HfSiON Gate Dielectrics With Improved nMOSFET Performances,” IEEE Trans. Electron Devices, vol. 51, pp.
    1798-1804, Nov. 2004.
    [2] P. Heremans, R. Bellens, G. Groeseneken, and H. E. Maes,Consistent Model for the Hot-Carrier Degradation in N-Channel and P-Channel MOSFET’s, ”IEEE Transactions on Electron Devices, Vol.35, 1998, p.2194.
    [3] S. Tam, P. K. Ko, and C. Hu, “Lucky-Electron Model of Channel Hot-Electron Injection in MOSFET’s,” IEEE Transaction on Electron Devices, Vol.31,September 1984, p.1116.
    [4] Jong.Son Lyu. Kee-Soo Nam and Choochon. Lee, "Determination of interface trap density in metal oxide semiconductor field-effect transistor through
    subthreshold slope measurement,” Jpn. J. Appl.Vol. 32,1993,No. 10,pp.4393-4397
    [5] Wesley L. Tseng, “A new charge pumping method of measuring Si-SiO2 interface states”, J. Appl.Phys., vol. 62, no. 2,July 1987,p.591-599.
    [6] E. H. Nicollian and J. R. Brews, “MOS Physics and Technology,” John Wiley & Sons, 1982.
    [7] J. J. O’Dwyer, ”The Theory of Electrical Conduction and Breakdown in Solid Dielectrics”, Clarendon Press, 1973.
    [8] Daniel M. Fleetwood., “Border Traps in MOS Devices” , IEEE Transaction on Nuclear Science, Vol.39, No.2,April 1992.
    [9] S. Tam, P. K. Ko, and C. Hu, “Lucky-Electron Model of Channel Hot-Electron Injection in MOSFET’s”, IEEE Transaction on Electron Devices, Vol.31, September 1984, p.1116.
    [10] N. Tsuji, N. Ajika, K. Yuzuriha, Y. Kunori, M. Hatanaka, and H. Miyoshi, ”New erase scheme for DINOR Flash Memory Enhancing Erase/Write Cycling Endurance Characetristics” , Technical Digest of IEDM, 1994, p.53.
    [11] T. P. Ma and P. V. Dressendorfer, “Ionizing Radiation Effects in MOS Devices and Circuits” , John Wiley & Sons,1989.
    [12] P. J. McWhorter, P. S. Winokur, “Simple Technique for Separating the Effects of Interface Traps and Trapped Oxide Charge in Metal-Oxide-Semiconductor Transistor” , Applied Physics Letters, January 1986, p.133.
    [13] Dieter K. Schroder, “Semiconductor Material and Devices Characterization”,John Wiley & Sons,1998.
    [14] K. T. San, and T. P. Ma, ”Determination of Trapped Oxide Charge in Flash EPROM’s and MOSFET’s with Thin Oxides” , IEEE Electron Device Letters,Vol.13, August 1992, p.439.
    [15] W. Weber, M. Brox, R. Thewes, and N.S. Saks, “Hot-hole-induced negative oxide charges in n-MOSFET’s” , IEEE Transactions on Electron Devices, Vol.42, August 1995, p.1473.
    [16] J. S. Bruglar and P. G. A. Jaspers, “Charge Pumping in MOS Devices” , IEEE Transactions on Electron Devices, Vol.16, 1969, p.297.
    [17] G. Groeseneken, H. E. Maes, N. Bertran, and R. F. De Keersmaecker, ”A Reliable Approach to Charge-Pumping Measurements in MOS Transistors” , IEEE Transactions on Electron Devices, Vol.31, 1984, p.42.
    [18] W. Chen, A. Balasinski, and T. P. Ma ,”Lateral profiling of oxide charge and interface traps near MOSFET junction” , IEEE Transactions on Electron Devices, Vol.40, January 1993, p.187.
    [19] W. Chen, A. Balasinski, and T. P. Ma ,”Evolution of Capture Cross-section of Radiation-Induced Interface Traps” , IEEE Transactions on Nuclear Science, Vol.39, NO.6,Dec 1992.
    [20] K. Torii, Y. Shimamoto, S. Saito, O. Tonomura, M. Hiratani, Y. Manabe, M. Caymax, and J.W. Maes, “The mechanism of mobility degradation in MISFETs with Al O gate dielectric,” in Symp. VLSI Tech. Dig., 2002,pp. 188–189.
    [21] M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with high-k insulator: The role of remote phonon scattering,” J. Appl.
    Phys., vol. 90, no. 9, pp. 4587–4608, 2001.
    [22] E. P. Gusev, D. A. Buchanan, A. Kumar, D. DiMaria, S. Guha, A. Callegari,S. Zafar, P. C. Jamison, D. A. Neumayer, M. Copel, M. A. Gribelyuk,H. Okorn-Schmidt, C.D’Emic, P.Kozlowski, K. Chan, N. Bojarczuk,and L.-A. Ragnarsson, “Ultrathin high-_ gate stacks for advanced CMOS devices,” in IEDM Tech. Dig., 2001, pp. 451–454.
    [23] W. J. Zhu, T. P. Ma, S. Zafer, and T. Tamagawa, “Charge trapping in ultrathin hafnium oxide,” IEEE Electron Device Lett., vol. 23, pp.597–599, Dec. 2002.
    [24] A. Kerber, E. Cartier, L. A. Ragnarsson, M. Rosmeulen, L. Pantisano,R. Degraeve, Y. Kim, and G. Groeseneken, “Direct measurement of the inversion charge in MOSFETs: Application to mobility extraction in alternative gate dielectrics,” in Symp. VLSI Tech. Dig., 2003, pp. 159–160.
    [25] J.-P. Han, E. M. Vogel, E. P. Gusev, C. D’Emic, C. A. Richter, D. W.Heh, and J. S. Suehle, “Energy distribution of interface traps in high-gated MOSFETs”,in Symp. VLSI Tech. Dig., 2003, pp. 161–162.
    [26] J.-P. Han, E. M. Vogel, E. P. Gusev, C. D’Emic, C. A. Richter D. W.Heh, and J. S. Suehle, “Asymmetric Energy Distribution of Interface Traps
    in n- and p-MOSFETs With HfO2 Gate Dielectric on Ultrathin SiON Buffer Layer”,IEEE Electron Device Lett., vol. 25,No 3, pp.126–128, March. 2004..
    [27] P. Heremans, J. Witters, G. V. Groeseneken, and H. E. Maes, “Analysis of the charge pumping technique and its application for the evaluation
    of MOSFET degradation,” IEEE Trans. Electron Devices, vol. 36, pp.1318–1335, Oct. 1989.
    [28] C. E. Weintraub, E. M. Vogel, J. R. Hauser, N. Yang, and V. Misra,“Study of low-frequency charge pumping on thin stated dielectrics,”IEEE Trans. Electron Devices, vol. 48, pp. 2754–2762, Nov. 2001.
    [29] Quazi Deen Mohd Khosru, Anri Nakajima, Takashi Yoshimoto, and Shin Yokoyama ”Reliable extraction of the energy distribution of Si/SiO2 interface traps in ultrathin metal–oxide–semiconductor structures” , Appl. Phys. Lett. Vol.80,No.21,May 2002
    [30] N. S. Saks and M. G. Ancona, “Determination of interface trap capture cross section using three-level charge pumping”,IEEE Electron Device Lett., vol. 11, pp. 339–341, Aug. 1990.
    [31] G-W. Lee,”Trap evaluations of metal/oxide/silicon field-effect transistors with high- k gate dielectric using charge pumping method”. APL.Vol.81,No11,September 2002
    [32] Mariko Takayanagi-Takagi and Yoshiaki Toyoshima,“Importance of Si-N Atomic Configuration at the SVOxynitride Interfaces on the Performance of Scale(d MOSFETs”, Technical Digest of IEDM, 1998, p.575-578.
    [33] E.M.Vogel,”Limitations of Conductance to the Measurement of the Interface State Density of MOS Capacitors with Tunneling Gate Dielectrics”,IEEE Trans.
    Electr. Dev. 47, 601-605, 2000
    [34] Chin-Lung Cheng, Chun-Yuan Lu, Kuei-Shu Chang-Liao, Ching-Hung Huang, Sheng-Hung Wang, and Tien-Ko Wang,”Effects of Interstitial Oxygen Defects at HfOxNy/Si Interface on Electrical Characteristics of MOS Devices”, IEEE Electron Device ,Vol. 53,No 1,pp.63–70, January. 2006.
    [35] A. Kerber et al., “Origin of the Threshold Voltage Instability in SiO2/HfO2 Dual Layer Gate Dielectrics,” IEEE Electron Device Let., vol 24, pp. 87-89, 2003.
    [36] E. M. Vogel, W. K. Henson, C. A. Richter, and J. S. Suehle, “Limitation of conductance to the measurement of the interface state density of MOS capacitors with tunneling gate dielectrics” , IEEE Trans. Electron
    Devices, vol. 47, pp. 601–608, May 2000.
    [37] E. H. Nicollian and A. Goetzberger,” MOS Conductance Technique for Measuring Surface State Parameters”, Appl. Phys. Lett. Vol.7,No.8,15 Oct 1965 p.216.
    [38] Daniel Bauza and Yves Maneglia, “In-Depth Exploration of Si-SiO2 Interface Traps in MOS Transistors Using the Charge Pumping Technique,” IEEE Trans. Electron Devices, vol. 44, pp. 2262-2266, Nov. 1997.
    [39] B. Djezzar, S. Oussalah, and A. Smatti, “A new oxide-trap based on charge pumping (OTCP) extraction method for irradiated MOSFET devices:part I (high frequencies),” IEEE Trans. Nucl. Sci., vol. 51, pp.1724–1731, Aug. 2004.
    [40] D. M. Fleetwood, M. R. Shaneyfelt, J. R. Schwank, P. S.Winokur, and F.W. Sexton, “Theory and application of dual-transistor charge separation analysis,” IEEE Trans. Nucl. Sci., vol. 36, pp. 1816–1824, Dec. 1989.
    [41] Stefan Jakschik,Aledjandro Avellan,Uwe Schroeder and Johann W.Bartha, “Influence of Al2O3 Dielectrics on the Trap-Depth Profiles in MOS Devices Investigated by the Charge-Pumping Method” ,IEEE Tran. Electron Devices, vol. 51,No. 12 ,pp.2252–2255,December 2004.
    [42] Neil L. Cohen, Ronaid E. Paulsen , and Marvin H. White,”Observation and Characterization of near-interface oxide traps with C-V techniques,” ,IEEE Tran. Electron Devices, vol. 42,No. 11 ,pp.2004–2009,November 1995.
    [43] T. R. Oldham, A. J. lelis, and F. B. Mclean,“Spatial dependence of trapped holes determined from tunneling analysis and measured anneling,”IEEE Trans. Nucl. Sci., vol. NS-33, pp. 1203–1209, Dec. 1986.
    [44] Chad E. Weintraub, Eric Vogel, John R. Hauser,Jimmie J. Wortman,and Pascal Masson,”Study of Low-Frequency Charge Pumping on Thin Stacked Dielectrics”, IEEE Electron Devices, Vol.48,No.12,December 2001
    [45] D. M. Fleetwood ,M. R. Shaneyfelt, L. C. Riewe, P. S. Winokur, and R. A. Reber,“The role of border traps in MOS high-temperature postirradiation annealing response”, IEEE Trans. Nucl. Sci., vol. 40, No. 6, pp. 1816–1824, Dec. 1993.
    [46] H. H. Li, Y. L. Chu, and C. Y.Wu, “A novel charge pumping method for extracting the lateral distributions of interface traps and effective oxide charge densities in MOSFET devices,” IEEE Trans. Electron Devices,
    vol. 44, pp. 782–791, May 1997.
    [47] R. E. Paulsen, R. R. Siergiej, M. L. French, and M. H. White, “Observation of near-interface oxide traps with the charge-pumping technique,”IEEE Electron Device Lett., vol. 13, pp. 627–629, Dec. 1992.
    [48] R. E. Paulsen and M. H. White, “Theory and application of charge pumping for the characterization of Si-SiO2 interface and near-interface oxide traps,” IEEE Trans. Electron Devices, vol. 41, pp. 1213–1216,July 1994.
    [49] B. Djezzar, “On the correlation between radiation-induced oxide- and border-trap effects in the gate-oxide nMOSFET’s,” Microelectron. Reliab.,vol. 42, pp. 1865–1874, 2002.
    [50] “Electrical characterization of radiation-induced border-trap in NMOS transistor using multi-frequency charge pumping technique,” in Algerian Conf. Microelectronics (ACM’02), vol. 1, Oct. 13–15, 2002,pp. 7–12.
    [51] Boualem Djezzar “What are these border traps: introduced by radiation and seen by charge pumping technique,” in Proc. 2001 IEEE Nuclear Science
    Symp. (NSS’01), vol. 1, San Diego, CA, Nov. 4–10, 2001, pp. 234–239.
    [52] G. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Keermaecker, “A reliable approach to charge pumping measurement in MOS transistors,”
    IEEE Trans. Electron Devices, vol. 31, pp. 42–53, Jan. 1984.
    [53] G. Groeseneken and H. E. Maes, “Basics and applications of charge pumping in submicron MOSFET’s,” in Proc. 21st Int. Conf. Microelectronics,
    MIEL’97, vol. 2, Sept. 14–17, 1997, pp. 581–589.
    [54] P. Heremans, J. Witters, G. Groeseneken, and H. E. Maes, “Analysis of the charge pumping technique and its application for the evaluation of MOSFET degradation” ,IEEE Tran. Electron Devices, vol. ED-36, pp.
    1318–1335, July 1989.
    [55] Boualem Diezzar, Slimance Qussalah, and Abderrazak Smatti, “A New Oxide-Trap Based on Charge-Pumping (OTCP) Extraction Method for Irradiated MOSFET Device:Part II (Low Frequencies),” IEEE Trans. Nucl. Sci., vol. 51, pp. 1732-1736, Aug. 2004.
    [56] W. Chen, A. Balasinski, and T. P. Ma, “Lateral Distribution of Radiation-Induced Damage in MOSFET’s,” IEEE Trans. Nucl. Sci., vol. 38, pp. 1124-1129, Dec. 1991.
    [57] W. Chen and T. P. Ma, “Channel-Hot-Carrier Induced Oxide Charge Trapping in NMOSFET’s,” in IEDM Tech. Dig., 1991, pp. 731-734.
    [58] T. Tsuchiya, T. Kobayashi, and S. Nakajima, “Hot-carrier-injected oxide region and hot-electron trapping as the main cause in Si nMOSFET degradation,” IEEE Trans. Electron. Devices, vol. ED-34, p. 386, 1987.
    [59] H. S. Wong, M. H. White, T. J. Krutsick, and R. V. Booth,“Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFET’s,” Solid-state Electron.,vol. 30, p. 953, 1987.
    [60] P. Heremans, H. E. Maes, and N. Saks, “Evaluation of hot carrier degradation of n-channel MOSFET’s with the charge pumping technique,” IEEE Electron Device Lett., vol. EDL-7,p. 428, 1986.
    [61] H. Haddara, and S. Cristoloveanu, “Static and dynamic transconductance model for depletion-mode transistors:A new characterization method for silicon-on-insulator materials,”IEEE Electron Device Lett., vol. 9, p.35, 1988.
    [62] H. Haddara and G. Ghibaudo, “Analytical modeling of transfer admittance in small MOSFETs and application to interface state characterization,” Solid-state Electron., vol. 31, p. 1077, 1988.
    [63] Hung-Sheng Chen, and Sheng S. Li, “Determination of Interface State Density in Small-Geometry MOSFET's by High- Low-Frequency Transconductance Method,”IEEE Electron Device Lett., vol. 12,No.1, p.13~15, 1991.
    [64] S. M. Sze, “Physics of Semiconductor Devices”. New York:Wiley, 1981.
    [65] Donald A. Neamen,“Semiconductor Physics & Devices”.New York:Wiley, 1997.
    [66] B.E. Weir, P.J. Silverman, D. Monroe, K.S. Krisch, M.A. Alam, G.B. Alers,T. W. Sorsch, G.L. Timp, F. Baumann, C.T. Liu, Y. Ma, D. Hwang,”Ultra-Thin Gate Dielectrics: They Break Down, But Do They Fail?” IEDM 97, p. 73-76

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE