簡易檢索 / 詳目顯示

研究生: 莊荃華
Chuang, Chuan-Hua
論文名稱: 嵌段共聚物與離子液體-高分子物複合體摻混之階層性結構研究
Hierarchical Structures of the Blends of Block Copolymer and Polymer-ionic Liquid Conjugates
指導教授: 陳信龍
Chen, Hsin-Lung
口試委員: 朱哲毅
Chu, Che-Yi
林裕軒
Lin, Yu-Hsuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 108
中文關鍵詞: 嵌段共聚物離子液體層板狀結構階層性結構
外文關鍵詞: Block copolymer, Ionic liquid, Lamellar structure, Hierarchical structure
相關次數: 點閱:47下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討了由對稱聚苯乙烯-聚(二甲基矽氧烷)嵌段共聚物(PS-b-PDMS)和寡聚二甲基矽氧烷(ODMS)-離子液體(IL)共軛物組成的混合物的相行為和層次結構。研究中使用的ODMS-IL包括ODMS-MMP(+)OMs(-), ODMS-Py(+)OMs(-), ODMS-MMP(+)OTs(-)與ODMS-Py(+)OTs(-)。小角X射線散射(SAXS)技術被用來探究這些混合物的自組裝結構和相行為。
    實驗結果顯示,這些摻混物展現出以大尺度和小尺度層狀結構(LAM-in-LAM)為特徵的層次結構。在較低重量分率的ODMS-IL時,大尺度的LAM結構相對穩定,而在較高分率下,小尺度的LAM變得更加顯著。純ODMS-IL材料中觀察到的離子效應也延續到混合系統中。具體而言,純ODMS-IL的較高TODT在混合系統中也有對應表現。含有OMs(-)陰離子的摻混物表現出比OTs(-)較高的熱穩定性。層次結構中小尺度LAM的層間距在OMs(-)和OTs(-)混合系統中也顯示出不同的趨勢,其中,OMs(-)系統相比其對應的純ODMS-IL材料之LAM會收縮,而OTs(-)系統的小尺度LAM則會擴展。
    這些發現展示了特定離子液體類型在決定PS-b-PDMS/ODMS-IL混合物的相行為和層次結構中具有關鍵影響。通過結構表徵和相行為分析,本研究展示了這些材料在納米技術和材料科學中先進應用的潛力。這些發現為設計具有定制屬性和複雜層次結構的聚合物提供了基礎,並為未來的創新提供了堅實的基礎。


    This study investigates the phase behavior and hierarchical structures of blends composed of symmetric polystyrene-block-poly(dimethyl siloxane) (PS-b-PDMS) and various oligo(dimethyl siloxane) (ODMS)-ionic liquid (IL) conjugates. The ODMS-ILs used in this research include ODMS-MMP(+)OMs(-), ODMS-Py(+)OMs(-), ODMS-MMP(+)OTs(-), ODMS-Py(+)OTs(-). Small-angle X-ray scattering (SAXS) was employed to characterize the self-assembled structures and phase behavior of these blends.
    The experimental results reveal that the blends exhibit hierarchical structures characterized by large-scale and small-scale lamellae (LAM-in-LAM). At lower weight fractions of ODMS-IL, the large-scale LAM structure remains relatively stable, with the small-scale LAM becoming more pronounced at higher concentrations. The ionic effects observed in the neat ODMS-IL materials are carried into the blend systems. Specifically, the higher TODT observed for the neat ODMS-ILs has its correspondence in the blending system. Blends with the anion OMs(-) exhibit higher thermal stability, with small-scale LAM peaks appearing at higher temperatures compared to blends with the anion OTs(-). The interlamellar distances of the small-scale LAMs in the hierarchical structue also show different trends in the OMs(-) and OTs(-) blending systems, with OMs(-) systems exhibiting a contraction (high-q shift) in the small-scale LAM, while OTs(-) systems showing an expansion (low-q shift) compared to their corresponding neat ODMS-ILs. These findings highlight the critical role of the specific ionic liquid type in determining the phase behavior and hierarchical structuring of PS-b-PDMS/ODMS-IL blends.
    Through structural characterization and phase behavior analysis, the research demonstrates the potential of these materials for advanced applications in nanotechnology and materials science. The findings provide a foundation for future innovations in designing polymers with tailored properties and complex hierarchical structures.

    Table of contents Abstract 2 摘要 4 List of Tables 14 Chapter 1 Introduction 15 1.1 Overview of Block Copolymers 17 1.2 Block copolymer blends with homopolymer 20 1.3 Hierarchical Structures in Polymeric Systems 24 1.3.1 Hierarchical Structures in Graft Copolymer Systems 24 1.3.2 Hierarchical Structures in Supramolecular systems 28 1.4 End-funtionalized Polymer and Polymeric Ionic liquid 35 1.5 Research Motivation 40 Chapter 2 Hierarchical Structure and Phase Behavior of the PS-b-PDMS/ODMS-IL Blends 43 2.1 Introduction 43 2.2 Experimental Section 45 2.2.1 Materials 45 2.2.2 SAXS Measurement 47 2.3 Results and Discussion 48 2.3.1 Phase behavior of the neat PS-b-PDMS 48 2.3.2 Phase behavior of the neat ODMS-IL 51 2.3.3 Phase Behavior of the Blends of PS-b-PDMS and h-DMS 57 2.4 Phase Behavior of the Blends of PS-b-PDMS and ODMS-ILs 64 2.4.1 SDMS/ODMS-MMP(+)OMs(-) and SDMS/ODMS-Py(+)OMs(-) Blends 64 2.4.2 SDMS/ODMS-MMP(+)OTs(-) and SDMS/ODMS-Py(+)OTs(-) Blends 82 2.4.3 Comparison of the OTs(-) and OMs(-) system 96 Chapter 3 Overall Summary 101 References 103

    1. Leibler, L., Theory of Microphase Separation in Block Copolymers. Macromolecules, 1980. 13(6): p. 1602-1617.
    2. Matsen, M.W. and F.S. Bates, Unifying Weak- and Strong-Segregation Block Copolymer Theories. Macromolecules, 1996. 29(4): p. 1091-1098.
    3. Cooke, D.M. and A.-C. Shi, Effects of Polydispersity on Phase Behavior of Diblock Copolymers. Macromolecules, 2006. 39(19): p. 6661-6671.
    4. Jackson, E. and M. Hillmyer, Nanoporous Membranes Derived from Block Copolymers: From Drug Delivery to Water Filtration. ACS nano, 2010. 4: p. 3548-53.
    5. Green, P.F. and R. Limary, Block copolymer thin films: pattern formation and phase behavior. Advances in Colloid and Interface Science, 2001. 94(1): p. 53-81.
    6. Kataoka, K., A. Harada, and Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews, 2001. 47(1): p. 113-131.
    7. Middha, E. and B. Liu, Nanoparticles of Organic Electronic Materials for Biomedical Applications. ACS Nano, 2020. 14(8): p. 9228-9242.
    8. Hu, X.-H. and S. Xiong, Fabrication of nanodevices through block copolymer self-assembly. Frontiers in Nanotechnology, 2022. 4: p. 762996.
    9. Singh, A.N., et al., Block Copolymer Nanostructures and Their Applications: A Review. Polymer-Plastics Technology and Engineering, 2015. 54(10): p. 1077-1095.
    10. Cummins, C., et al., Strategies for Inorganic Incorporation using Neat Block Copolymer Thin Films for Etch Mask Function and Nanotechnological Application. Advanced Materials, 2016. 28(27): p. 5586-5618.
    11. Bhushan, B. and S.R. Schricker, A review of block copolymer-based biomaterials that control protein and cell interactions. Journal of Biomedical Materials Research Part A, 2014. 102(7): p. 2467-2480.
    12. Czarnecki, S. and A. Bertin, Hybrid Silicon-Based Organic/Inorganic Block Copolymers with Sol–Gel Active Moieties: Synthetic Advances, Self-Assembly and Applications in Biomedicine and Materials Science. Chemistry – A European Journal, 2018. 24(14): p. 3354-3373.
    13. Zhao, Z., et al., Amphiphilic DNA Organic Hybrids: Functional Materials in Nanoscience and Potential Application in Biomedicine. International Journal of Molecular Sciences, 2018. 19(8): p. 2283.
    14. Schnitzler, T. and A. Herrmann, DNA Block Copolymers: Functional Materials for Nanoscience and Biomedicine. Accounts of Chemical Research, 2012. 45(9): p. 1419-1430.
    15. Lendlein, A., et al., Polymers in biomedicine and electronics. Macromol Rapid Commun, 2010. 31(17): p. 1487-91.
    16. Huang, C., Y. Zhu, and X. Man, Block copolymer thin films. Physics Reports, 2021. 932: p. 1-36.
    17. Matsen, M.W., Effect of architecture on the phase behavior of AB-type block copolymer melts. Macromolecules, 2012. 45(4): p. 2161-2165.
    18. Tyler, C.A. and D.C. Morse, Orthorhombic F d d d Network in Triblock and Diblock Copolymer Melts. Physical review letters, 2005. 94(20): p. 208302.
    19. Nap, R., et al., Double periodic lamellar-in-lamellar structure in multiblock copolymer melts with competing length scales. Macromolecules, 2006. 39(19): p. 6765-6770.
    20. Zhao, B., et al., Emergence and Stability of a Hybrid Lamella–Sphere Structure from Linear ABAB Tetrablock Copolymers. ACS Macro Letters, 2018. 7(1): p. 95-99.
    21. Chang, A.B. and F.S. Bates, The ABCs of block polymers. 2020, ACS Publications. p. 2765-2768.
    22. Liu, M., et al., Theoretical study of phase behavior of frustrated ABC linear triblock copolymers. Macromolecules, 2012. 45(23): p. 9522-9530.
    23. Zheng, W. and Z.-G. Wang, Morphology of ABC triblock copolymers. Macromolecules, 1995. 28(21): p. 7215-7223.
    24. Dorfman, K.D., Frank-Kasper Phases in Block Polymers. Macromolecules, 2021. 54(22): p. 10251-10270.
    25. Hashimoto, T., S. Koizumi, and H. Hasegawa, Ordered structure in blends of block copolymers. 2. Self-assembly for immiscible lamella-forming copolymers. Macromolecules, 1994. 27(6): p. 1562-1570.
    26. Hashimoto, T., et al., Ordered structure in blends of block copolymers. 1. Miscibility criterion for lamellar block copolymers. Macromolecules, 1993. 26(11): p. 2895-2904.
    27. Lindsay, A.P., et al., Complex Phase Behavior in Particle-Forming AB/AB′ Diblock Copolymer Blends with Variable Core Block Lengths. Macromolecules, 2021. 54(15): p. 7088-7101.
    28. Mueller, A.J., et al., Emergence of a C15 Laves Phase in D block Polymer/Homopolymer Blends. Acs Macro Letters, 2020. 9(4): p. 576-582.
    29. Xie, S.Y., et al., Phase Behavior of Salt-Doped A/B/AB Ternary Polymer Blends: The Role of Homopolymer Distribution. Macromolecules, 2021. 54(14): p. 6990-7002.
    30. Han, S.H., et al., Highly asymmetric lamellar nanopatterns via block copolymer blends capable of hydrogen bonding. ACS Nano, 2012. 6(9): p. 7966-72.
    31. Hashimoto, T., H. Tanaka, and H. Hasegawa, Ordered structure in mixtures of a block copolymer and homopolymers. 2. Effects of molecular weights of homopolymers. Macromolecules, 1990. 23(20): p. 4378-4386.
    32. Tanaka, H., H. Hasegawa, and T. Hashimoto, Ordered structure in mixtures of a block copolymer and homopolymers. 1. Solubilization of low molecular weight homopolymers. Macromolecules, 1991. 24(1): p. 240-251.
    33. Xie, J. and A.C. Shi, Phase Behavior of Binary Blends of Diblock Copolymers: Progress and Opportunities. Langmuir, 2023. 39(33): p. 11491-11509.
    34. Spencer, R.K.W. and M.W. Matsen, Boundary Tension Between Coexisting Phases of a Block Copolymer Blend. Macromolecules, 2015. 48(8): p. 2840-2848.
    35. Xie, S., et al., Formation of a C15 Laves Phase with a Giant Unit Cell in Salt-Doped A/B/AB Ternary Polymer Blends. ACS Nano, 2020. 14(10): p. 13754-13764.
    36. Wu, Z., et al., Microphase and Macrophase Separations in Binary Blends of Diblock Copolymers. Macromolecules, 2011. 44(6): p. 1680-1694.
    37. Hashimoto, T., M. Fujimura, and H. Kawai, Domain-boundary structure of styrene-isoprene block copolymer films cast from solutions. 5. Molecular-weight dependence of spherical microdomains. Macromolecules, 1980. 13(6): p. 1660-1669.
    38. Hashimoto, T., M. Shibayama, and H. Kawai, Domain-boundary structure of styrene-isoprene block copolymer films cast from solution. 4. Molecular-weight dependence of lamellar microdomains. Macromolecules, 1980. 13(5): p. 1237-1247.
    39. Hashimoto, T., M. Shibayama, and H. Kawai, Ordered structure in block polymer solutions. 4. Scaling rules on size of fluctuations with block molecular weight, concentration, and temperature in segregation and homogeneous regimes. Macromolecules, 1983. 16(7): p. 1093-1101.
    40. Hashimoto, T., et al., Structure and properties of tapered block polymers. 4." Domain-boundary mixing" and" mixing-in-domain" effects on microdomain morphology and linear dynamic mechanical response. Macromolecules, 1983. 16(4): p. 648-657.
    41. Koizumi, S., H. Hasegawa, and T. Hashimoto, Ordered structures of block copolymer/homopolymer mixtures. 5. Interplay of macro-and microphase transitions. Macromolecules, 1994. 27(22): p. 6532-6540.
    42. Shibayama, M., T. Hashimoto, and H. Kawai, Ordered structure in block polymer solutions. 1. Selective solvents. Macromolecules, 1983. 16(1): p. 16-28.
    43. Liang, R., et al., Hierarchically engineered nanostructures from compositionally anisotropic molecular building blocks. Nature Materials, 2022. 21(12): p. 1434-1440.
    44. Li, C., et al., A New Level of Hierarchical Structure Control by Use of Supramolecular Self-Assembled Dendronized Block Copolymers. Advanced Materials, 2008. 20(23): p. 4530-4534.
    45. Ruokolainen, J., G.t. Brinke, and O. Ikkala, Supramolecular Polymeric Materials with Hierarchical Structure-Within-Structure Morphologies. Advanced Materials, 1999. 11(9): p. 777-780.
    46. Mäkinen, R., et al., Orientation of Supramolecular Self-Organized Polymeric Nanostructures by Oscillatory Shear Flow. Macromolecules, 2000. 33(9): p. 3441-3446.
    47. Kosonen, H., et al., One-dimensional optical reflectors based on self-organization of polymeric comb-shaped supramolecules. The European physical journal. E, Soft matter, 2003. 10: p. 69-75.
    48. Polushkin, E., et al., In situ radial small angle synchrotron X-ray scattering study of shear-induced macroscopic orientation of hierarchically structured comb-shaped supramolecules. Macromolecules, 2003. 36(5): p. 1421-1423.
    49. Alberda van Ekenstein, G., et al., Shear alignment at two length scales: comb-shaped supramolecules self-organized as cylinders-within-lamellar hierarchy. Macromolecules, 2003. 36(10): p. 3684-3688.
    50. Ikkala, O. and G. ten Brinke, Hierarchical self-assembly in polymeric complexes: Towards functional materials. Chemical communications (Cambridge, England), 2004. 19: p. 2131-7.
    51. Bondzic, S., et al., Self-Assembly of Supramolecules Consisting of Octyl Gallate Hydrogen Bonded to Polyisoprene-b lock-poly (vinylpyridine) Diblock Copolymers. Macromolecules, 2004. 37(25): p. 9517-9524.
    52. Polushkin, E., et al., In-situ SAXS study on the alignment of ordered systems of comb-shaped supramolecules: A shear-induced cylinder-to-cylinder transition. Macromolecules, 2005. 38(5): p. 1804-1813.
    53. Ikkala, O., et al., Mesomorphic State of Poly(vinylpyridine)-Dodecylbenzenesulfonic Acid Complexes in Bulk and in Xylene Solution. Macromolecules, 1995. 28(21): p. 7088-7094.
    54. Kosonen, H., et al., Mesomorphic Structure of Poly (styrene)-b lock-poly (4-vinylpyridine) with Oligo (ethylene oxide) sulfonic Acid Side Chains as a Model for Molecularly Reinforced Polymer Electrolyte. Macromolecules, 2002. 35(27): p. 10149-10154.
    55. Kosonen, H., et al., One-dimensional optical reflectors based on self-organization of polymeric comb-shaped supramolecules. The European Physical Journal E, 2003. 10: p. 69-75.
    56. Tiitu, M., et al., Cylindrical self-assembly and flow alignment of comb-shaped supramolecules of electrically conducting polyaniline. Macromolecules, 2004. 37(19): p. 7364-7370.
    57. Goujon, A., et al., Hierarchical Self-Assembly of Supramolecular Muscle-Like Fibers. Angewandte Chemie International Edition, 2016. 55(2): p. 703-707.
    58. Frenzel, F., et al., Molecular Dynamics and Charge Transport in Polymeric Polyisobutylene-Based Ionic Liquids. Macromolecules, 2016. 49(7): p. 2868-2875.
    59. Hadjichristidis, N., S. Pispas, and M. Pitsikalis, End-functionalized polymers with zwitterionic end-groups. Progress in Polymer Science, 1999. 24(6): p. 875-915.
    60. Schädler, V., et al., Self-Assembly of Ionically End-Capped Diblock Copolymers. Macromolecules, 1998. 31(15): p. 4828-4837.
    61. Stojanovic, A., et al., Designing melt flow of poly(isobutylene)-based ionic liquids. Journal of Materials Chemistry A, 2013. 1(39): p. 12159-12169.
    62. Vlassopoulos, D., M. Pitsikalis, and N. Hadjichristidis, Linear Dynamics of End-Functionalized Polymer Melts:  Linear Chains, Stars, and Blends. Macromolecules, 2000. 33(26): p. 9740-9746.
    63. Shen, Y., et al., Macrolattice formation in amorphous associating polymers. Phys Rev A, 1991. 43(4): p. 1886-1891.
    64. Zare, P., et al., Hierarchically Nanostructured Polyisobutylene-Based Ionic Liquids. Macromolecules, 2012. 45(4): p. 2074-2084.

    QR CODE