簡易檢索 / 詳目顯示

研究生: 古國欣
Kuo-Hsin Ku
論文名稱: 五苯環在疏水性氮化鋁上的成長機制研究
The growth of pentacene on hydrophobic AlN
指導教授: 黃振昌
J. Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 65
中文關鍵詞: 五苯環氮化鋁有機薄膜電晶體
外文關鍵詞: pentacene, AlN, OTFT
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究五苯環成長於介電層薄膜時的初期的成長機制。我們觀察到五苯環在氮化鋁以及在二氧化矽的表面成長時,以完全不同的堆疊方式向上成長。此成長模式的差異主要是因為兩種基材的表面能不同所導致。從原子力顯微鏡的影像結果可以看出,低表面能的氮化鋁薄膜,讓五苯環以二維的平面島狀方式成長,而表面能較高的二氧化矽則讓五苯環以成核密度較高,三維的方式向上堆疊。因此載子在元件的底層傳輸時,成長於氮化鋁薄膜的五苯環,由於晶界較少,提供載子一個順暢的傳輸路徑,提高了元件的載子遷移率。爲了確定五苯環薄膜的性質,也以X光繞射、拉曼光譜觀察其結構性質的不同。
    了解氮化鋁作為介電層的優勢之後,我們進ㄧ步探討製程參數的調整,以便改善其薄膜性質。實驗結果顯示以低製程溫度,低電子鎗功率,可以得到較平整的氮化鋁薄膜,有利於載子的傳輸。以高氮氣/氬氣流量比成長,可避免薄膜內的鋁原子過多,而降低元件漏電流。


    目錄 第一章 緒論 1-1 OTFT簡介…………………………………………………………1 1-2 OTFT的元件結構……………………………………………………2 1-3 OTFT載子傳輸………………………………………………………2 1-4 OTFT所使用的介電材料……………………………………………4 1-4-1基材……………………………………………………………4 1-4-2主動層…………………………………………………………4 1-4-3介電層…………………………………………………………5 1-5氮化鋁(Aluminum Nitride)與五苯環(Pentacene)的應用與材料特性………………………………………………………………………6 1-5-1 氮化鋁之應用與特性………………………………………6 1-5-2 五苯環之應用與特性………………………………………8 1-6 研究動機……………………………………………………………9 1-7論文架構……………………………………………………………10 第二章 實驗方法與原理………………………………………………18 2-1介電層的沉積………………………………………………………18 2-2 pentacene的沉積…………………………………………………21 2-3 OTFT 的製備………………………………………………………22 2-4 材料分析…………………………………………………………23 2-4-1 表面能 (Surface Energy)量測…………………………23 2-4-2 原子力顯微鏡(Atomic Force Microscopy)……………24 2-4-3 拉曼光譜 …………………………………………………25 2-4-4 X-ray 繞射分析…………………………………………25 2-4-5 光電子能譜分析儀(ESCA) ………………………………26 第三章 結果與討論……………………………………………………32 3-1 Pentacene在不同介電材料上成長初期之機制及其薄膜性質…32 3-1-1 成膜初期形貌 ……………………………………………32 3-1-2 介電層的表面能 …………………………………………34 3-1-3 兩種介電層上五苯環之拉曼訊號 ………………………35 3-1-4 五苯環之X-Ray 繞射圖譜 ………………………………36 3-2製程溫度與氣體流量對於氮化鋁薄膜特性之影響………………36 3-2-1製程溫度對所成長之氮化鋁薄膜之影響…………………37 3-2-2不同氣體流量所製作之氮化鋁薄膜………………………39 第四章 結論……………………………………………………………65 圖目錄 圖1-1 OTFT之元件結構(a)Top gate (b)Top contact(c)Bottom contact元件結構示意圖………………………………………………11 圖1-2 p-type,top contact OTFT元件的操作示意圖(a)無偏壓(b)accummulation mode (c)depletion mode ………………………12 圖1-3 氮化鋁的原子結構 ……………………………………………13 圖1-4 pentacene原子鍵結結構………………………………………13 圖2-1 本論文實驗流程 ………………………………………………27 圖2-2 反應式磁控濺鍍 ………………………………………………28 圖2-3 元件結構示意圖 ………………………………………………29 圖 2-4 接觸角示意圖…………………………………………………29 圖2-5 AFM 量測系統示意圖 …………………………………………30 圖3-1 各種OTFT介電層材料的載子遷移率表現 …………………41 圖3-2不同厚度的pentacene在AlN之AFM形貌,厚度分別為 (a)1nm (b)2nm (c)5nm (d)10nm (3μm×3μm)………………………41 圖3-3 Pentacene在SiO2之成長初期AFM形貌(3μm×3μm) ………42 圖3-4 AFM深度統計結果(a)pentacene 1nm 成長於AlN (b)pentacene 1nm 成長於SiO2………………………………………………………44 圖3-5 Pentacene在AlN以及SiO2上之成長模式示意圖…………45 圖3-6 SiO2與diiodo-methane,water,ethylene glycol之接觸情形與接觸角(a)diiodo-methane 34.9°(b)D.I.water 18.6°(c)ethylene glycol 2.3°……………………………………………………………46 圖3-7 AlN與diiodo-methane,water,ethylene glycol之接觸情形與接觸角(a)diiodo-methane 46.6°(b)D.I.water 78.3°(c)ethylene glycol 55.7°…………………………………………………………47 圖3-8 Pentacene 成長於AlN and SiO2兩種介電層之拉曼光譜(a)厚度1-100nm之pentacene 成長於AlN上(b) 厚度1-100nm之pentacene成長於SiO2上(c)1nm pentacene於AlN和SiO2之拉曼光譜(d)2nm pentacene於AlN和SiO2之拉曼光譜………………………49 圖3-9 Pentacene在(a)1158cm-1及(b)1178cm-1拉曼訊號的振動模式示意圖 …………………………………………………………………51 圖3-10不同厚度pentacene 之XRD訊號(a)pentacene成長於AlN (b)pentacene成長於SiO2 ……………………………………………52 圖3-11以磁控濺鍍室溫成長AlN之TEM diffraction pattern …53 圖3-12以磁控濺鍍於室溫成長氮化鋁薄膜(a)TEM 影像以及(b)局部影像富立葉轉換(c)反富立葉轉換……………………………………54 圖3-13以不同製程溫度所成長AlN之XRD訊號 ……………………55 圖3-14以不同製程溫度所成長之AlN之AFM表面形貌(a)150℃(b)200℃(c)250℃(d)350℃ …………………………………………56 圖3-15 氮化鋁薄膜表面能與製程溫度之關係 ……………………57 圖3-16 氮化鋁薄膜表面能與製程時電子槍功率之關係……………57 圖3-17不同氮流率下成長氮化鋁薄膜之ESCA圖譜…………………59 圖3-18 氮化鋁薄膜在不同氮流率比對鋁所擷取的歐傑影像 ……61 圖3-19氮化鋁薄膜在不同氮流率比對氮所擷取的歐傑元素影像…62 表目錄 表1-1常用於OTFT之介電層材料性質………………………………14 表3-1 petacene成長於AlN之拉曼訊號分析………………………50 表3-2 petacene成長於SiO2之拉曼訊號分析 ……………………50 表3-3 不同製程溫度之氮化鋁所測得之水和甘油接觸角 …………57 表3-4 不同氮流率所製作出的AlN薄膜成份………………………60 表3-5各種用於OTFT的介電層表面能之比較………………………63

    Ch1 Reference

    1. Tsumura, K.K., &T. Ando, Macromolecular electronic devices:Field-effect transistor with a polythiophene thin film. Phys. Lett, 1986. 49: p. 1210.
    2. J.H.Burroughes, C.A.J., R.H.Friend, NEW SEMICONDUCTOR-DEVICE PHYSICS IN POLYMER DIODES AND TRANSISTORS NATURE, 1988. 335(6186): p. 137-141.
    3. Thiemann, H.S.a.K.H., Solid State Communication, 1977. 23: p. 815.
    4. Y.Y. Lin, D.J.G., S.F.Nelson, and T.N.Jackson, Pentacene organic thin-film transistors-molecular ordering and mobility. IEEE Electron Device Lett., 1997. 18: p. 87-89.
    5. P.R.L.Malenfant, C.D.D.a., Organic thin film transistors for large area electronics. ADVANCED MATERIALS, 2002. 14(2): p. 99.
    6. H.Klauk, M.H., U. Zschieschang, F.Eder, D.Rohde, G,Schmid, and C.Dehm, Flexible organic complementary circuits. IEEE TRANSACTIONS ON ELECTRON DEVICES 2005. 52(4): p. 618-622.
    7. R.A.Street, D.K., and A.R.Volkel, Hole transport in polycrystalline pentacene transistors. APPLIED PHYSICS LETTERS, 2002. 80(9): p. 1658-1660.
    8. G.Horowitz, Organic field-effect transistors. ADVANCED MATERIALS, 1998. 10(5): p. 365-377.
    9. Y.Y Lin, D.J.G., S.F.Nelson,andT.N.Jackson, Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE ELECTRON DEVICE LETTERS 2000. 18(12): p. 606-608.
    10. L.B.Schein, C.B.D., and A.R.McGhie, Observation of the Band-Hopping Transition for Electrons in Naphthalene. Physics review letter, 1978. 40(3): p. 197-200.
    11. 劉溥寬, 射頻電漿濺鍍氮化鋁在有機薄膜電晶體閘極絕緣層之應用, in 光電工程研究所. 2006, 國立交通大學.
    12. Antonio Facchetti, M.-H.Y., &Tobin J. Marks, Gate dielectrics for organic fiels-effect transistors :New oppurtunities for organic electronics. ADVANCED MATERIALS, 2005. 17: p. 1705.
    13. C. D. Dimitrakopoulos, I.K., S. Purushothaman, D. A. Neumayer, P. R. Duncombe, R. B. Laibowitz, Low-Voltage, High-Mobility Pentacene Transistors with Solution-Processed High Dielectric Constant Insulators ADVANCED MATERIALS, 1999. 11: p. 1372.
    14. E. A. Chowdhury, J.K., J. O. Olowolafe, G. Qiu, G. Katulka, D. Hits, M. Dashiell, and a.D.v.d. Weide, Thermally oxidized AlN thin films for device insulators. APPLIED PHYSICS LETTERS, 1997. 70(20): p. 2732-2734.
    15. G.A.Cox, D.O.C., K.Kawabe & R.H. Tredgold, Journal Physics Chemical Solids, 1967. 28: p. 543.
    16. F. Hasegawa, T.T., K. Kubo and Y. Nannichi, Japanese Journal Applied Physics, 1987. 26: p. 1555.
    17. S. Kaneko, M.T., K. Masu, K. Tsubouchi and N. Mikoshiba, Journal of Crystal Growth, 1991. 115: p. 643.
    18. Y. Someno, M.S.a.T.H., Journal Applied Physics, 1990. 29: p. L358.
    19. K. Sato, S.U., K. Tsubouchi and N. Mikoshiba, Ultrasonics Symp. Proc. IEEE, 1985: p. 192.
    20. N. Azema, J.D., R. Berjoan, J. L. Balladore and L. Cot, J. Physique IV, 1991. 1: p. C2-405.
    21. N. Azema, J.D., R. Berjoan, C. Dupuy, J. L. Balladore and L. Cot, Journal of Crystal Growth, 1993. 129: p. 621.
    22. Osawa, H.K.a.T., Japanese Journal of Applied Physics, 1985. 24(10): p. L795.
    23. LB. Rowland, R.K., S. Tanaka and RF. Davis, Journal of Materials Research, 1993. 8(9): p. 2301.
    24. Kordesch, V.W.B.a.M.E., Journal Vacuum Science Technology A, 1998. 16: p. 1676.
    25. WT. Lin, L.M., GJ. Chen and HS. Liu, Applied Physics Letters, 1995. 66(16): p. 2066.
    26. RD. Vispute, J.N., H. Wu and K. Jagannadham, Journal od Applied Physica, 1995. 77(9): p. 4724.
    27. K. Tominaga, H.I., Y. Sueyoshi, Surface & Coatings Technology, 1993. 61(1-3): p. 182.
    28. S. Uchiyama, Y.I., M. Ohta, M. Niigaki, H. Kan, Y. Nakanishi and T. Yamaguchi,, Journal of Crystal Growth, 1998. 190(Jun): p. 448.
    29. Okazaki, H.M.a.K., Ferroelectrics, 1992. 131: p. 83.
    30. Duh, C.H.a.J., Surface & Coatings Technology, 1992. 56(1): p. 51.
    31. C. C. Cheng, Y.C.C., H. J. Wang and W. R. Chen, Journal Vacuum Science Technology A, 1996. 14: p. 2238.
    32. Iwaki, K.K.a.M., Nuclear Instruments and Methods in Physics Research, 1991. B59: p. 467.
    33. Y. Someno, M.S.a.T.H., Japanese Journal of Applied Physics part 2-letters, 1990. 29(2): p. L358.
    34. B. Aspar, R.R., A. Figueras, B. Armas and C. Combescure, Journal of Crystal Growth, 1993. 129(1-2): p. 56.
    35. Edgar, J.R., Journal Material Research, 1992. 7: p. 235.
    36. 王祖豪, 電感式耦合電漿化學濺鍍法成長氮化鋁薄膜, in 材料科學工程研究所. 2000, 清華大學. p. 4.
    37. N. Hashimoto, Y.S., T. Bando, H. Yoden and S. Deki, Journal American Ceramic Society,, 1991. 74: p. 1282.
    38. W.H. Mills, M.M., The synthetical production of derivatives of dinaphthanthracene. Journal of the Chemical Society, 1912. 101: p. 2194-2208.
    39. Christine C. Mattheus, G.A.d.W., Robert A. de Groot,and Thomas T. M. Palstra, Modeling the Polymorphism of Pentacene. J. AM. CHEM. SOC., 2003. 125: p. 6323.
    40. Kew-Yu Chen, H.-H.H., Chung-Chih Wu, Jiunn-Jye Hwangc and Tahsin J. Chow, A new type of soluble pentacene precursor for organic thin-film transistors. CHEMICAL COMMUNICATIONS 2006(10): p. 1065.
    41. Hsiao-Wen Zan, K.-H.Y., Pu-Kuan Liu,Kuo-Hsin Ku,Chien-Hsun Chen,Jennchang Hwang, Low-voltage organic thin film transistors with hydrophobic aluminum nitride film as gate insulator. Organic Electronics, 2007. 8(4): p. 450-454.

    Ch2 Reference
    1. Sullivan, D.E., Surface tension and contact angle of a liquid–solid interface. J. Chem. Phys., 1981. 74(4): p. 2604-2615.
    2. Kui-Xiang Ma, C.-H.H., Furong Zhu and Tai-Shung Chung, Investigation of surface energy for organic light emitting polymers and indium tin oxide. Thin Solid Film, 2000. 371(1-2): p. 140.
    3. 汪建民, 材料分析. 2006: 中國材料科學學會.
    4. Vickerman, J.C., Surface analysis : the principle techniques. 1997: John Wiley & Sons.

    Ch3 Reference
    1. 劉溥寬, 射頻電漿濺鍍氮化鋁在有機薄膜電晶體閘極絕緣層之應用, in 光電工程研究所. 2006, 國立交通大學.
    2. Hsiao-Wen Zan, K.-H.Y., Pu-Kuan Liu,Kuo-Hsin Ku,Chien-Hsun Chen,Jennchang Hwang, Low-voltage organic thin film transistors with hydrophobic aluminum nitride film as gate insulator. Organic Electronics, 2007. 8(4): p. 450-454.
    3. Hsiao-Wen ZAN, K.-H.Y., Pu-Kuan LIU, Kuo-Hsin KU, Chien-Hsun CHENand Jennchang HWANG, Effects of Ar/N-2 flow ratio on sputtered-AlN film and its application to low-voltage organic thin-film transistors. JAPANESE JOURNAL OF APPLIED PHYSICS 2006. 45(37-41): p. L1093–L1096.
    4. Kodzasa T, Y.M., Uemura S, Kamata T, Memory effects of pentacene MFS-FET. SYNTHETIC METALS, 2003. 137(1--3): p. 943-944.
    5. Sullivan, D.E., Surface tension and contact angle of a liquid–solid interface. J. Chem. Phys., 1981. 74(4): p. 2604-2615.
    6. Yoshihiro Yamakita, J.K., and Koichi Ohnoa, Molecular vibrations of [n] oligoacenes( n=2-5 and 10… )and phonon dispersion relations of polyacene. THE JOURNAL OF CHEMICAL PHYSICS, 2007. 126: p. 064904.
    7. W. Y. Chou, a.C.W.K., H. L. Cheng, Y. S. Mai, F. C. Tang, S. T. Lin, C. Y. Yeh, and J. B. Horng, Epitaxial pentacene films grown on the surface of ion-beam-processed gate dielectric layer. JOURNAL OF APPLIED PHYSICS, 2006. 99: p. 114511.
    8. Sandra E. Fritz, T.W.K., and C. Daniel Frisbie, Effect of Dielectric Roughness on Performance of Pentacene TFTs and Restoration of Performance with a Polymeric Smoothing Layer. J. Phys. Chem. B, 2005. 109: p. 10574.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE