簡易檢索 / 詳目顯示

研究生: 魏伯諭
Wei, Po-Yu
論文名稱: 多壁奈米碳管/環氧樹脂碳化複合材料對二價銅離子吸附能力研究
Cu(II) adsorption by carbonized multi-walled carbon nanotubes/epoxy composites
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員: 郭信甫
黃淑娟
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 94
中文關鍵詞: 多壁奈米碳管環氧樹脂吸附二價銅離子電容去離子法
外文關鍵詞: Carbon nanotubes, Epoxy, Adsorption, Cu(II), Capacitive deionization
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以簡單的方式製作多壁奈米碳管複合物,成功地去除溶液中的二價銅離子(Cu2+),同時解決奈米碳管難以回收的缺點。
      三種比例之多壁奈米碳管(MWCNTs)混合環氧樹脂(Epoxy resin)後再經碳化(Carbonization)和酸化(Acidification)改質步驟,用來吸附溶液中二價銅離子。吸附實驗分為兩部分:以粉末狀樣品做吸附;另一部分是使用薄板狀樣品以電容去離子技術(capacitive deionization, CDI)去除溶液中Cu(II)。同時量測樣品各種性質,探討比表面積、平均孔徑、電阻率、石墨化程度、表面形貌和官能基與吸附效率之間的關係。
      結果顯示,樣品經過酸化步驟,樣品電阻率大幅下降;比表面積下降;平均孔徑提升;極性官能基增加,使樣品由疏水性轉為親水性。粉末狀樣品以Langmuir等溫吸附模型估算其最大吸附容量為19.49 mg•g-1,而吸附現象較符合Freundlich模型。粉末樣品經過酸洗可重複利用。薄片樣品在施加1.2 V偏壓下,吸附容量可提升約3.5倍。溶液濃度低時,Cu(II)之去除機制為電雙層吸附及官能基離子交換;高濃度時,機制為電解硫酸銅溶液。經過再生步驟之薄板狀樣品,去除Cu(II)能力皆相近,但僅為初次使用之樣品的80 %左右。


    Carbonized multi-walled carbon nanotubes/epxoy composites are made to absorb Cu2+ in aqueous solution and CNTs are found retrievable after repeated experiments.
    Carbonized composites, consisting of multi-walled carbon nanotubes and epoxy resin in different ratios, are used to remove copper ions in the solution after carbonization and acidification processes. Adsorptive experiments are divided into two parts; first, the samples powdered and are used as Adsorbents; second, samples are made as thin films and ionic absorption is carried out using CDI technology. Samples are also characterized in order to establish the relationship between sample structure and chemical treatments.
    Results show that acidification decreases resistivity of powdered samples and specific surface area whereas porosity and density of functional groups increase. Accordingly, samples change from hydrophobic into hydrophilic property and the maximum adsorption capacity of Cu(II) calculated by Langmuir model reaches 19.49 mg•g-1, fit better with Freundlich model than that of Langmuir model. Samples can be reused through regeneration procedure. In CDI adsorption experiment, the adsorption capacity of film samples increases by three-fold at applied 1.2 V between electrodes. The adsorption mechanism is found as a result of combined electrosorption and ion exchange at low concentration situation. At high concentration, adsorption of copper(II) sulfate proceeds through electrolysis and amount of removed ions from solution decreases to 80 % at the 1st run. Absorption curves become stabilized after the 1st regeneration process.

    摘要 I Abstract II 總目錄 IV 圖目錄 VIII 表目錄 XI 第一章 前言及研究動機 1 第二章 文獻回顧 3 2.1奈米碳管 (Carbon nanotubes, CNTs) 3 2.1.1 奈米碳管簡介及結構 3 2.1.2 奈米碳管的電性 5 2.1.3 奈米碳管去除水中重金屬離子之應用 8 2.1.4 奈米碳管的吸附機制 11 2.1.5 影響奈米碳管吸附金屬離子的因素 12 2.1.5.1 pH值 12 2.1.5.2 官能基 13 2.1.5.3 吸附劑劑量 14 2.1.5.4 離子強度 14 2.1.5.5 接觸時間和起始離子濃度 15 2.1.5.6 溫度 16 2.2 電容去離子技術 (Capacitive deionization, CDI) 22 2.2.1 簡介 22 2.2.2 奈米碳管於電容去離子技術之應用 24 2.3 環氧樹脂 (Epoxy resins) 26 2.3.1 簡介 26 2.3.2 奈米碳管及環氧樹脂複合材的熱性質 27 2.4 吸附理論 29 2.4.1 吸附類型 29 2.4.2 離子交換 (Ion exchange) 30 2.4.3 等溫吸附曲線 (Adsorption isotherm) 31 2.4.4 等溫吸附模型 34 2.4.4.1 Freundlich等溫吸附模型 34 2.4.4.2 Langmuir等溫吸附模型 35 第三章 實驗方法 37 3.1 實驗材料及儀器 37 3.2 實驗流程 39 3.3 實驗步驟 40 3.3.1 樣品製備 40 3.3.2 樣品測量 43 3.3.2.1 電阻率量測 43 3.3.2.2 比表面積及孔隙量測 (ASAP) 45 3.3.2.3 場發射掃描式電子顯微鏡 (FE-SEM) 45 3.3.2.4 拉曼光譜 (Raman Spectroscopy) 46 3.3.2.5 傅立葉轉換紅外線光譜 (FT-IR) 47 3.3.2.6 Boehm滴定法 48 3.3.2.7 感應耦合電漿原子發射光譜 (ICP-AES) 49 3.3.3 吸附實驗 50 3.3.3.1 Cu(II)溶液配製方式 50 3.3.3.2 粉末樣品吸附實驗 50 3.3.3.3 電容去離子實驗 51 第四章 結果與討論 55 4.1 碳化及酸化後樣品分析 55 4.1.1 電阻率分析 55 4.1.2 拉曼光譜分析 56 4.1.3 場發射掃描式電子顯微鏡分析 58 4.1.4 比表面積及孔隙分析 61 4.1.5 傅立葉轉換紅外線光譜分析 63 4.1.6 Boehm滴定法結果分析 66 4.2 樣品吸附能力分析 67 4.2.1 粉末樣品吸附能力分析 67 4.2.1.1 靜態吸附與動態吸附之比較 67 4.2.1.2 粉末樣品之等溫吸附模型 69 4.2.1.3 粉末樣品再生實驗 71 4.2.2 電容去離子實驗結果分析 73 4.2.2.1 有無施加偏壓對吸附容量之影響 73 4.2.2.2 吸附時間對吸附容量之影響 73 4.2.2.3 溶液起始濃度對吸附容量之影響 76 4.2.2.4 電容去離子再生實驗 78 第五章 結論 80 參考文獻 83

    [1] C.L. Chen, J. Hu, D.D. Shao, J.X. Li and X.K. Wang, Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II), J. Hazard. Mater. 164 (2009) 923-928.
    [2] R.Q. Long and R.T. Yang, Carbon nanotubes as a superior sorbent for nitrogen oxides, Ind. Eng. Chem. Res. 40 (2001) 4288-4291.
    [3] R.Q. Long and R.T. Yang, Carbon nanotubes as superior sorbent for dioxin removal, J. Am. Chem. Soc. 123 (2001) 2058-2059.
    [4] S. Agnihotri, M.J. Rood and M. Rostam-Abadi, Adsorption equilibrium of organic vapors on single-walled carbon nanotubes, Carbon 43 (2005) 2379-2388.
    [5] Z.C. Di, Y.H. Li, Z.K. Luan and J. Liang, Adsorption of chromium(VI) ions from water by carbon nanotubes, Adsorpt. Sci. Technol. 22 (2004) 467-474.
    [6] X.L. Tan, M. Fang, C.L. Chen, S.M. Yu and X.K. Wang, Counterion effects of nickel and sodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution, Carbon 46 (2008) 1741-1750.
    [7] S.G. Wang, W.X. Gong, X.W. Liu, Y.W. Yao, B.Y. Gao and Q.Y. Yue, Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes, Sep. Purif. Technol. 58 (2007) 17-23.
    [8] M. van der Zande, R. Junker, X.F. Walboomers and J.A. Jansen, Carbon nanotubes in animal models: A systematic review on toxic potential, Tissue Eng. Part B Rev. 17 (2011) 57-69.
    [9] C.W. Lam , J.T. James, R. McCluskey, S. Arepalli and R.L. Hunter, A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks, Crit. Rev. Toxicol. 36 (2006) 189-217.
    [10] K. Kostarelos, The long and short of carbon nanotube toxicity, Nat. Biotech. 26 (2008) 774-776.
    [11] X.Z. Wang, M.G. Li, Y.W. Chen, R.M. Cheng, S.M. Huang, L.K. Pan and Z. Sun, Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes, Appl. Phys. Lett. 89 (2006) 053127.
    [12] Y.K. Zhan, L.K. Pan, C.Y. Nie, H.B. Li and Z. Sun, Carbon nanotube-chitosan composite electrodes for electrochemical removal of Cu(II) ions, J. Allo. Comp. 509 (2011) 5667-5671.
    [13] D.S. Zhang, L.Y. Shi, J.H. Fang, K. Dai and J.Q. Liu, Influence of carbonization of hot-pressed carbon nanotube electrodes on removal of NaCl from saltwater solution, Mater. Chem. Phys. 96 (2006) 140-144.
    [14] J.C. Farmer, D.V. Fix, G.V. Mack, J.F. Poco, J.K. Nielsen, R.W. Pekala and J.H. Richardson, Capacitive deionization of seawater, pacific rim environmental conference, San Francisco, CA, October 2-4 (1995).
    [15] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.
    [16] M.F. Yu, B.S. Files, S. Arepalli and R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett. 84 (2000) 5552-5555.
    [17] M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly and R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287 (2000) 637-640.
    [18] J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Forró, W. Benoit and L. Zuppiroli, Mechanical properties of carbon nanotubes Appl. Phys. A: Mater. Sci. Process. 69 (1999) 255-260.
    [19] W.A. de Heer, Nanotubes and the pursuit of applications, MRS Bull. 29 (2004) 281-285.
    [20] J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes and J.E. Fischer, Thermal properties of carbon nanotubes and nanotube-based materials, Appl. Phys. A: Mater. Sci. Process 74 (2002) 339-343.
    [21] P. Kim, L. Shi, A. Majumdar and P.L. McEuen, Thermal Transport Measurements of Individual Multiwalled Nanotubes, Phys. Rev. Lett. 87 (2001) 215502.
    [22] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer and R.E. Smalley, Crystalline ropes of metallic carbon nanotubes science 273 (1996) 483-487.
    [23] P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith and R.E. Smalley, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett. 313 (1999) 91-97.
    [24] R. Saito, M. Fujita, G. Dresselhaus and M.S. Dresselhaus, Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 60 (1992) 2204-2206.
    [25] P.M. Ajayan and S. Iijima, Smallest carbon nanotube, Nature 358 (1992) 23.
    [26] S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363 (1993) 603-605.
    [27] Y.C. Choi, Y.M. Shin, S.C. Lim, D.J. Bae, Y.H. Lee and B.S. Lee, Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition, J. Appl. Phys. 88 (2000) 4898-4903.
    [28] E.F. Kukovitsky, S.G. L’vov, N.A. Sainov, V.A. Shustov and L.A. Chernozatonskii, Correlation between metal catalyst particle size and carbon nanotube growth, Chem. Phys. Lett. 355 (2002) 497-503.
    [29] L. Kim, E.M. Lee, S.J. Cho and J.S. Suh, Diameter control of carbon nanotubes by changing the concentration of catalytic metal ion solutions, Carbon 43 (2005) 1453-1459.
    [30] J.C. Charlier and J.P. Michenaud, Energetics of multilayered carbon tubules, Phys. Rev. Lett. 70 (1993) 1858-1861.
    [31] N. Wang, Z.K. Tang, G.D. Li and J.S. Chen, Materials science: Single-walled 4 Å carbon nanotube arrays, Nature 408 (2000) 50-51.
    [32] Q.H. Yang, S. Bai, J.L. Sauvajol and J.B. Bai, Large-diameter single-walled carbon nanotubes synthesized by chemical vapor deposition, Adv. Mater. 15 (2003) 792-795.
    [33] T.W. Ebbesen and P.M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature 358 (1992) 220-222.
    [34] C.H. Kiang, M. Endo, P.M. Ajayan, G. Dresselhaus and M.S. Dresselhaus, Size effects in carbon nanotubes, Phys. Rev. Lett. 81 (1998) 1869-1872.
    [35] M.S. Dresselhaus and P.C. Eklund, Phonons in carbon nanotubes, Adv. Phys. 49 (2000) 705-814.
    [36] R. Sait, G. Dresselhaus and M.S. Dresselhaus, Physical properties of carbon nanotubes, Imperial Colleage Press (1998).
    [37] M.S. Dresselhaus, G. Dresselhaus and P. Eklund, Science of fullerenes and carbon nanotubes, Academic Press (1996).
    [38] L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie and M.L. Cohen, Pure carbon nanoscale devices: Nanotube heterojunctions, Phys. Rev. Lett. 76 (1996) 971-974.
    [39] H.J. Dai, Carbon nanotubes: Opportunities and challenges, Surf. Sci. 500 (2002) 218-241.
    [40] G.P. Rao, C.S. Lu and F.S. Su, Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review, Separ. Purif. Tech. 58 (2007) 224-231.
    [41] 中華民國行政院環境保護署,水污染防治法-放流水標準,2011年。
    [42] X.M. Ren, C.L. Chen, M. Nagatsu and X.K. Wang, Carbon nanotubes as adsorbents in environmental pollution management: A review, Chem. Eng. J. 170 (2011) 395-410.
    [43] C.H. Wu, Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto as-produced and modified carbon nanotubes, J. Colloid. Interface Sci. 311 (2007) 338-346.
    [44] Y.H. Li, Y.Q. Zhu, Y.M. Zhao, D.H. Wu and Z.K. Luan, Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution, Diamond Relat. Mater. 15 (2006) 90-94.
    [45] Y.H. Li, S.G. Wang, J.Q. Wei, X.F. Zhang, C.L. Xu, Z.K. Luan, D.H. Wu and B.Q. Wei, Lead adsorption on carbon nanotubes, Chem. Phys. Lett. 357 (2002) 263-266.
    [46] Y.H. Li, Z.C. Di, J. Ding, D.H. Wu, Z.K. Luan and Y.Q. Zhu, Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes, Wat. Res. 39 (2005) 605-609.
    [47] H.J. Wang, A.L. Zhou, F. Peng, H. Yu and L.F. Chen, Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb(II) in aqueous solution, Mater. Sci. Eng. A 466 (2007) 201-206.
    [48] X.M. Ren, D.D. Shao, G.X. Zhao, G.D. Sheng, J. Hu, S.T. Yang and X.K. Wang, Plasma induced multiwalled carbon nanotube grafted with 2-vinylpyridine for preconcentration of Pb(II) from aqueous solutions, Plasma Proc. Polym. 8 (2011) 589-598.
    [49] Y.H. Li, S.G. Wang, Z.K. Luan, J. Ding, C.L. Xu and D.H. Wu, Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes, Carbon 41 (2003) 1057-1062.
    [50] P. Liang, Y. Liu, L. Guo, J. Zeng and H.B. Lu, Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry, J. Anal. At. Spectrom 19 (2004) 1489-1492.
    [51] Y.H. Li, J. Ding, Z.K. Luan, Z.C. Di, Y.F. Zhu, C.L. Xu, D.H. Wu and B.Q. Wei, Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes, Carbon 41 (2003) 2787-2792.
    [52] O. Moradi, K. Zare and M. Yari, Interaction of some heavy metal ions with single walled carbon nanotube, Int. J. Nano. Dim. 1 (2011) 203-220.
    [53] C.S. Lu and C.T. Liu, Removal of nickel (II) from aqueous solution by carbon nanotubes, J. Chem. Technol. Biotechnol. 81 (2006) 1932-1940.
    [54] C.S. Lu, H.T. Chiu and C.T. Liu, Removal of zinc(II) from aqueous solution by purified carbon nanotubes: Kinetics and equilibrium studies, Ind. Eng. Chem. Res. 45 (2006) 2850-2855.
    [55] A. Stafiej and K. Pyrzynska, Adsorption of heavy metal ions with carbon nanotubes, Sep. Purif. Technol. 58 (2007) 49-52.
    [56] K. Pillay, E.M. Cukrowska and N.J. Coville, Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution, J. Hazard. Mater. 166 (2009) 1067-1075.
    [57] Z.M. Gao, T.J. Bandosz, Z.B. Zhao, M. Han and J.S. Qiu, Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes, J. Hazard. Mater. 167 (2009) 357-365.
    [58] C.L. Chen and X.K. Wang, Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes, Ind. Eng. Chem. Res. 45 (2006) 9144-9149.
    [59] C.Y. Lu, C.T. Liu and F.S. Su, Sorption kinetics, thermodynamics and competition of Ni2+ from aqueous solutions onto surface oxidized carbon nanotubes, Desalination 249 (2009) 18-23.
    [60] D. Xu, X.L. Tan, C.L. Chen and X.K. Wang, Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes, J. Hazard. Mater. 154 (2008) 407-416.
    [61] G.D. Vuković, A.D. Marinković, S.D. Škapin, M.Ɖ. Ristić, R. Aleksić, A.A. Perić-Grujić and P.S. Uskoković, Removal of lead from water by amino modified multi-walled carbon nanotubes, Chem. Eng. J. 173 (2011) 855-865.
    [62] C.S. Lu and H.T. Chiu, Adsorption of zinc(II) from water with purified carbon nanotubes, Chem. Eng. Sci. 61 (2006) 1138-1145.
    [63] Z. Reddad, C. Gerente, Y. Andres and P. Le Cloirec, Adsorption of several metal ions onto a low-cost biosorbent: Kinetic and equilibrium studies , Environ. Sci. Technol. 36 (2002) 2067-2073.
    [64] Y.S. Ho, D.A.J. Wase and C.F. Forster, Batch nickel removal from aqueous solution by sphagnum moss peat, Wat. Res. 29 (1995) 1327-1332.
    [65] Y. Oren, Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review), Desalination 228 (2008) 10-29.
    [66] K.L. Yang, T.Y. Ying, S. Yiacoumi, C. Tsouris and E.S. Vittoratos, Electrosorption of ions from aqueous solutions by carbon aerogel: An electrical double-layer model, Langmuir 17 (2001) 1961-1969.
    [67] R.Z. Ma, J. Liang, B.Q. Wei, B. Zhang, C.L. Xu and D.H. Wu, Study of electrochemical capacitors utilizing carbon nanotube electrodes, J. Power Sources 84 (1999) 126-129.
    [68] D.S. Zhang, L.Y. Shi, J.H. Fang and K. Dai, Removal of NaCl from saltwater solution using carbon nanotubes/activated carbon composite electrode, Mater. Lett. 60 (2006) 360-363.
    [69] J.P. Pascault and R.J.J. Williams, Epoxy polymers: New materials and innovations, Wiley-VCH (2010).
    [70] D. Puglia, L. Valentini, I. Armentano and J.M. Kenny, Effects of single-walled carbon nanotube incorporation on the cure reaction of epoxy resin and its detection by Raman spectroscopy, Diamond Relat. Mater. 12 (2003) 827-832.
    [71] P.C. Ma, J.K. Kim and B.Z. Tang, Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites, Compos. Sci. Tech. 67 (2007) 2965-2972.
    [72] D.M. Ruthven, Principles of adsorption and adsorption processes, Wiley-Interscience (1984).
    [73] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional), Pure Appl. Chem. 54 (1982) 2201-2218.
    [74] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57 (1985) 603-619.
    [75] A.A. Jafar and S. Balasubramanian, Adsorption of Pb(II) ions on teak leaves activated carbon-A kinetic and equilibrium study, Der chemica sinica 1 (2010) 35-43.
    [76] I. Langmuir, The constitution and fundamental properties of solids and liquids Part I Solids, J. Am. Chem. Soc. 38 (1916) 2221-2295.
    [77] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361-1403.
    [78] R. Qadeer and A.H. Rehan, A study of the adsorption of phenol by activated carbon from aqueous solutions, Turk. J. Chem. 26 (2002) 357-361.
    [79] L.J. Van der Pauw, A method of measuring specific resistivity and hall effect of discs of arbitrary shape, Philips Res. Rep. 13 (1958) 1-9.
    [80] S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of porous solids and powders: Surface area, pore size and density. Kluwer Academic Publishers (2004).
    [81] J. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer and J.R. Michael, Scanning electron microscopy and X-ray microanalysis, Springer (2003).
    [82] F. Tuinstra and J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys. 53 (1970) 1126-1130.
    [83] P.R. Griffiths and J.A. De Haseth, Fourier transform infrared spectrometry (chemical analysis: A series of monographs on analytical chemistry and its applications), Wiley-Interscience (2007).
    [84] A.M. Oickle, S.L. Goertzen, K.R. Hopper, Y.O. Abdalla, H.A. Andreas, Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant, Carbon 48 (2010) 3313-3322.
    [85] J.L. Todoli and J.M. Mermet, Liquid sample introduction in ICP spectrometry: A practical guide, Elsevier Science (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE