研究生: |
黃浩哲 Huang, Hao Jhe |
---|---|
論文名稱: |
利用耗散粒子動力學模擬pH敏性MPEG-b-(PLA-co-PAE)嵌段共聚物之藥物輸送系統 Dissipative Particle Dynamic Study on drug delivery in pH-sensitive block copolymer MPEG-b-(PLA-co-PAE) |
指導教授: |
張榮語
Chang, Rong Yeu |
口試委員: |
朱一民
曾煥錩 吳建興 黃招財 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 耗散粒子動力學 、pH敏性嵌段共聚物 、藥物輸送 |
外文關鍵詞: | Dissipative particle dynamics, pH-sensitive block copolymer, Drug delivery |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是利用耗散粒子動力學,模擬研究以嵌段共聚物MPEG-b-(PLA-co-PAE)為載體,裝載藥物DOX所形成之平衡形態,並且改變嵌段比例、高分子濃度及藥物濃度,觀察平衡形態的變化,計算在不同條件下,藥物的乘載效率以及藥物載體內的分布狀況,接著模擬在弱酸性環境下,載體的平衡形態變化。
本篇使用的載體是雙親性的嵌段共聚物MPEG-b-(PLA-co-PAE),poly(ethylene glycol)(PEG)具有生物相容性而poly(β-amino ester)(PAE)具有無毒性及生物可分解性質,poly(lactide)(PLA)則是有生物可分解性及生物可吸收性;此載體是一種pH敏性的高分子,再弱酸性環境下,PAE會被質子化變成PAEH,而從疏水性轉變為親水性,使載體結構解體,進行藥物釋放,因此,MPEG-b-(PLA-co-PAE)被認為是具有發展性的藥物載體。
研究結果發現,嵌段共聚物的PEG比例較大時,會增加藥物裝載能力以及裝載效率,而在弱酸性環境下時,藥物載體的微胞大小會變大,並且變大的幅度會隨著PAE嵌段比例增加而增加,這也表示會有更快的藥物釋放速率。
This work uses dissipative particle dynamic simulation to study on morphology of drug carrier MPEG-b-(PLA-co-PAE) with different block ratio, copolymer concentration and drug concentration. In different condition, drug loading efficiency and drug distribution in drug carrier are investigated. Finally ,in weakly acidic environment, drug carrier morphology and drug releasing situation will also be discussed.
In this work, we use amphiphilic pH-sensitive copolymer as drug carrier, composed of hydrophobic poly(β-amino ester)(PAE) and hydrophilic poly(ethylene glycol)(PEG). Because of its tertiary amine, PAE has a weak basic character and can be protonated at low pH. Therefore, PAE becoming hydrophilic causes the aggregation structure broken and drug releasing. Poly(β-amino ester)(PAE) is non-toxic and biodegradable, poly(ethylene glycol)(PEG) is biocompatible, and poly(lactide)(PLA) is biodegradable and bioabsorbable, thus PEG(-PAE)4 copolymer is promising candidate for drug delivery.
The results indicate that drug loading efficiency and drug loading capability will increase while ratio of PEG block is increasing. In weakly acidic environment, the drug carrier size will become larger. And the larger ratio of PAE block, the larger size the drug carrier will become. It’s also represent faster drug releasing rate.
1. Hamman, Josias H, and Hamman. "Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in Drug Delivery Systems." Marine drugs 8.4 (2010):1305-1322.
2. Zilinskas, Gregory J, et al. "Poly(ester amide)-Poly(ethylene oxide) Graft Copolymers: Towards Micellar Drug Delivery Vehicles." International Journal of Polymer Science 2012(2012):1-11.
3. Koh, Jong K, et al. "Fabrication of 3D interconnected porous TiO2nanotubes templated by poly(vinyl chloride-g-4-vinyl pyridine) for dye-sensitized solar cells." Nanotechnology 22.36 (2011):365401.
4. J. M. Haile. 1992. "Molecular Dynamics Simulation: Elementary Methods" (1st ed.). John Wiley & Sons, Inc., New York, NY, USA.
5. Giddings, J. Calvin, ed. Advances in chromatography. Vol. 14. CRC Press, 1976.
6. Lynn, David M., and Robert Langer. "Degradable poly (β-amino esters): synthesis, characterization, and self-assembly with plasmid DNA." Journal of the American Chemical Society 122.44 (2000): 10761-10768.
7. Potineni, Anupama, et al. "Poly (ethylene oxide)-modified poly (β-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery."Journal of Controlled Release 86.2 (2003): 223-234.
8. Wang, Hong, et al. "Dissipative particle dynamics simulation study on complex structure transitions of vesicles formed by comb-like block copolymers." Polymer 52.9 (2011):2094-2101.
9. 蘇芳瑩,2014, “利用耗散粒子動力學預測星狀嵌段共聚物(PEO-PLA)n形態於藥物輸送系統下之應用”,國立清華大學化學工程學研究所碩士論文
10. Luo, Zhong lin, Jianwen Luo, and Jiang. "pH-sensitive drug loading/releasing in amphiphilic copolymer PAE–PEG: Integrating molecular dynamics and dissipative particle dynamics simulations." Journal of controlled release 162.1 (2012):185-193.
11. Min, Kyung H, et al. "Tumoral acidic pH-responsive MPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy." Journal of controlled release 144.2 (2010):259-266.
12. Zhang, Can Y, et al. "Self-assembled pH-responsive MPEG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery." Biomaterials 33.26 (2012):6273-6283.
13. Hoogerbrugge, P.J. and J.M.V.A. Koelman, "Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics." Europhysics Letters, 1992. 19(3): p. 155-160.
14. Soto-Figueroa, C., et al., "Mesoscopic simulation of metastable microphases in the order-order transition from gyroid-to-lamellar states of PS-PI diblock copolymer." Chemical Physics Letters, 2008. 460(4-6): p. 507-511.
15. Espanol, P. and P. Warren, "Statistical-Mechanics of Dissipative Particle Dynamics". Europhysics Letters, 1995. 30(4): p. 191-196.
16. Groot, R D. "Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation." The Journal of chemical physics 107.11 (1997):4423-4435.
17. Hamley, I.W., "The Physics of Block Copolymers. " Oxford University Press: Oxford, 1998.
18. Li, Xuejin, et al. "Shape Transformations of Membrane Vesicles from Amphiphilic Triblock Copolymers: A Dissipative Particle Dynamics Simulation Study." Macromolecules 42.8 (2009):3195-3200.
19. Zhao, Ying-Tao, et al. "Effect of molecular architecture on the morphology diversity of the multicompartment micelles: A dissipative particle dynamics simulation study." Polymer 49.22 (2008):4899-4909.
20. Chen, Houyang, EliChen, andRuckenstein. "Formation of complex colloidal particles: morphologies and mechanisms." Soft matter 8.34 (2012):8911.
21. Posocco, P., M. Fermeglia, and S. Pricl, "Morphology prediction of block copolymers for drug delivery by mesoscale simulations. " Journal of Materials Chemistry, 2010. 20(36): p. 7742-7753.
22. Yang, Chufen, et al. "Dissipative Particle Dynamics Study on Aggregation of MPEG-PAE-PLA Block Polymer Micelles Loading Doxorubicine." Chinese journal of chemistry 30.9 (2012):1980-1986.
23. Nie, Shu Yu, et al. "Dissipative Particle Dynamics Studies of Doxorubicin-Loaded Micelles Assembled from Four-Arm Star Triblock Polymers 4AS-PCL-b-PDEAEMA-b-PPEGMA and their pH-Release Mechanism." The Journal of Physical Chemistry B 117.43 (2013): 13688-13697.
24. Groot, R.D. and T.J. Madden, "Dynamic simulation of diblock copolymer microphase separation." Journal of Chemical Physics, 1998. 108(20): p. 8713-8724.
25. Velázquez, María E, et al. "Finite-size effects in dissipative particle dynamics simulations." The Journal of chemical physics 124.8 (2006):084104.
26. RadialDistributionFunction, http://en.wikipedia.org/wiki/Radial_distribution_function
27. Lin, Wen jing, et al. "Amphiphilic miktoarm star copolymer (PCL) 3-(PDEAEMA-b-PPEGMA) 3 as pH-sensitive micelles in the delivery of anticancer drug." Journal of Materials Chemistry B 2.25 (2014): 4008-4020.
28. Kim, So Yeon, and Young Moo Lee. "Taxol-loaded block copolymer nanospheres composed of methoxy poly (ethylene glycol) and poly (ε-caprolactone) as novel anticancer drug carriers." Biomaterials 22.13 (2001): 1697-1704.
29. Hu, Yong, et al. "Preparation and drug release behaviors of nimodipine-loaded poly (caprolactone)–poly (ethylene oxide)–polylactide amphiphilic copolymer nanoparticles." Biomaterials 24.13 (2003): 2395-2404.
30. Chen, Zenglei, et al. "Vesicles from the self-assembly of coil–rod–coil triblock copolymers in selective solvents." Polymer 55.12 (2014): 2921-2927.
31. Chansuna, Mantana, Nuttaporn Pimpha, and Visit Vao-soongnern. "Mesoscale simulation and experimental studies of self-assembly behavior of a PLA-PEG-PLA triblock copolymer micelle for sustained drug delivery." Journal of Polymer Research 21.6 (2014): 1-9.
32. Xia, J. and C.L. Zhong, "Dissipative particle dynamics study of the formation of multicompartment micelles from ABC star triblock copolymers in water. " Macromolecular Rapid Communications, 2006. 27(14): p. 1110-1114.