簡易檢索 / 詳目顯示

研究生: 吳維宸
Woo, William
論文名稱: 建立以單核球作為細胞載體攜帶抗癌藥物及影像對比劑之傳遞系統
Establishment of using monocytes as Cell-Mediated Therapeutic and Imaging Agent Delivery System
指導教授: 江啟勳
口試委員: 江啟勳
邱信程
洪志宏
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 80
中文關鍵詞: 單核球細胞藥物載體
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藥物傳遞在癌症治療方面一直是很重要的研究領域之一,開發一個高專一性及低副作用的藥物傳遞系統是必須的。單核球可以滲透至腫瘤組織並累積在缺氧區域中,同時單核球可以穿越血腦屏障,成為一個有潛力的細胞藥物載體。為了探討這個可行性,本研究利用巨噬細胞細胞株 (RAW) 以及C57BL/6J小鼠骨髓細胞在體外分化成單核球 (BMDM) ,給予包覆臨床抗癌用藥Doxorubicin高分子藥物載體poly(AAc-co-DSA) 以及超音波影像對比劑Perfluoropentane droplet,並測試在不同的環境下移動的能力,最後藉由照過放射線的腫瘤條件培養液進行單核球體外訓練。實驗結果顯示,骨髓分化單核球擁有良好的藥物載體攜帶能力,單核球吞噬超音波影像對比藥物後並不會導致載體瓦解及功能性的喪失,同時骨髓分化的單核球有極佳移動至腫瘤微環境的能力。經由照過放射線的腫瘤條件培養液體外訓練後的單核球,其移動至腫瘤微環境的能力顯著提高,同時可以彌補單核球攜帶藥物後移動能力的不足,並且細胞在移動之後並會導致藥物的流失。在活體實驗中確實可以觀察到綠色螢光表現蛋白單核球在經由偉靜脈注射後確實會滲透至腫瘤組織中。我們成功的利用體外訓練的方式,建立了一個以細胞作為藥物載體的系統,並且有極大的潛力運用在活體系統之中。


    目錄 第一章、緒論 8 1.1攝護腺瘤 8 1.1.1攝護腺瘤簡介 8 1.1.2攝護腺癌的臨床治療 9 1.2腫瘤微環境 10 1.2.1腫瘤微環境介紹 10 1.2.2腫瘤血管新生 11 1.2.3腫瘤缺氧區域 12 1.2.4腫瘤相關巨噬細胞 13 1.2.5腫瘤相關巨噬細胞與缺氧區 14 1.3 癌症奈米技術 14 1.4細胞載體 15 1.5研究目的與內容 16 第二章、實驗方法 18 2.1 細胞培養 18 2.1.1配置DMEM細胞培養液 18 2.1.2配置RPMI-1640細胞培養液 18 2.1.3 TRAMP-C1細胞培養液的配方 19 2.1.4細胞繼代 19 2.2小鼠骨髓細胞萃取與單核球分化 19 2.2.1動物來源 19 2.2.2小鼠骨髓細胞萃取 20 2.2.3 腹腔巨噬細胞萃取 21 2.2.4單核球分化 21 2.2.5單核球吞噬能力測試 22 2.2.6單核球吞噬後存活率測試 23 2.3細胞移動能力測試 23 2.3.1條件培養液的製備 23 2.3.2細胞移動能力測試 24 2.4流式細胞儀 25 2.5動物實驗 26 2.5.1 動物犧牲 26 2.5.2周邊血萃取 26 2.5.3螢光固定與腫瘤組織包埋 27 2.5.4腫瘤細胞均質化 28 2.5.5腫瘤組織冷凍切片 28 2.5.6組織免疫螢光染色 29 2.5.7腫瘤植入 29 2.5.8單核球尾靜脈注射 30 第三章、實驗結果 31 3.1骨髓細胞分化與定性分析 31 3.2單核球吞噬能力測試 32 3.2.1 單核球吞噬綠光矽晶能力測試 32 3.2.2 單核球吞噬PAAC-d15能力測試 33 3.2.3單核球吞噬PAAC-d15時間點存活率及螢光表現測試 34 3.2.4 單核球吞噬(poly(AAc-co-DSA))-d25載體測試 35 3.2.5 單核球吞噬Perfluoropentane droplet能力測試 36 3.3單核球體外訓練及移動能力測試 38 3.3.1 建立單核球移動能力測試模組 38 3.3.2 單核球移動能力測試 39 3.3.3細胞吞噬載體後移動能力測試(由黃宥寬及鄭雅惠同學協助完成) 40 3.3.4單核球體外訓練 41 3.4活體實驗 42 3.4.1 單核球滲透模組建立 42 3.4.2單核球體外訓練後腫瘤滲透能力測試 43 第四章、總結與討論 45 4.1細胞載體系統建立 45 4.2細胞載體與藥物控制釋放 46 4.3單核球體外訓練 47 4.4 活體實驗 49 4.5 總結 49 第五章 圖表與說明 51

    1 A. Ben-Baruch, 'Inflammation-Associated Immune Suppression in Cancer: The Roles Played by Cytokines, Chemokines and Additional Mediators', Semin Cancer Biol, 16 (2006), 38-52.
    2 M. C. Bosco, M. Puppo, S. Pastorino, Z. Mi, G. Melillo, S. Massazza, A. Rapisarda, and L. Varesio, 'Hypoxia Selectively Inhibits Monocyte Chemoattractant Protein-1 Production by Macrophages', J Immunol, 172 (2004), 1681-90.
    3 M. C. Bosco, G. Reffo, M. Puppo, and L. Varesio, 'Hypoxia Inhibits the Expression of the Ccr5 Chemokine Receptor in Macrophages', Cell Immunol, 228 (2004), 1-7.
    4 J. M. Brown, and A. J. Giaccia, 'The Unique Physiology of Solid Tumors: Opportunities (and Problems) for Cancer Therapy', Cancer Res, 58 (1998), 1408-16.
    5 I. Caras, C. Tucureanu, L. Lerescu, R. Pitica, L. Melinceanu, S. Neagu, and A. Salageanu, 'Influence of Tumor Cell Culture Supernatants on Macrophage Functional Polarization: In Vitro Models of Macrophage-Tumor Environment Interaction', Tumori, 97 (2011), 647-54.
    6 J. Choi, H. Y. Kim, E. J. Ju, J. Jung, J. Park, H. K. Chung, J. S. Lee, J. S. Lee, H. J. Park, S. Y. Song, S. Y. Jeong, and E. K. Choi, 'Use of Macrophages to Deliver Therapeutic and Imaging Contrast Agents to Tumors', Biomaterials, 33 (2012), 4195-203.
    7 M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, 'A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors', Nano Lett, 7 (2007), 3759-65.
    8 H. Dou, C. J. Destache, J. R. Morehead, R. L. Mosley, M. D. Boska, J. Kingsley, S. Gorantla, L. Poluektova, J. A. Nelson, M. Chaubal, J. Werling, J. Kipp, B. E. Rabinow, and H. E. Gendelman, 'Development of a Macrophage-Based Nanoparticle Platform for Antiretroviral Drug Delivery', Blood, 108 (2006), 2827-35.
    9 M. Ferrari, 'Cancer Nanotechnology: Opportunities and Challenges', Nat Rev Cancer, 5 (2005), 161-71.
    10 G. H. Ghassabeh, P. De Baetselier, L. Brys, W. Noel, J. A. Van Ginderachter, S. Meerschaut, A. Beschin, F. Brombacher, and G. Raes, 'Identification of a Common Gene Signature for Type Ii Cytokine-Associated Myeloid Cells Elicited in Vivo in Different Pathologic Conditions', Blood, 108 (2006), 575-83.
    11 I. Hamada, M. Kato, T. Yamasaki, K. Iwabuchi, T. Watanabe, T. Yamada, S. Itoyama, H. Ito, and K. Okada, 'Clinical Effects of Tumor-Associated Macrophages and Dendritic Cells on Renal Cell Carcinoma', Anticancer Res, 22 (2002), 4281-4.
    12 T. Hanada, M. Nakagawa, A. Emoto, T. Nomura, N. Nasu, and Y. Nomura, 'Prognostic Value of Tumor-Associated Macrophage Count in Human Bladder Cancer', Int J Urol, 7 (2000), 263-9.
    13 A. L. Harris, 'Hypoxia--a Key Regulatory Factor in Tumour Growth', Nat Rev Cancer, 2 (2002), 38-47.
    14 R. K. Jain, 'The Next Frontier of Molecular Medicine: Delivery of Therapeutics', Nat Med, 4 (1998), 655-7.
    15 S. T. Kang, and C. K. Yeh, 'Intracellular Acoustic Droplet Vaporization in a Single Peritoneal Macrophage for Drug Delivery Applications', Langmuir, 27 (2011), 13183-8.
    16 A. H. Klopp, E. L. Spaeth, J. L. Dembinski, W. A. Woodward, A. Munshi, R. E. Meyn, J. D. Cox, M. Andreeff, and F. C. Marini, 'Tumor Irradiation Increases the Recruitment of Circulating Mesenchymal Stem Cells into the Tumor Microenvironment', Cancer Res, 67 (2007), 11687-95.
    17 Q. T. Le, N. C. Denko, and A. J. Giaccia, 'Hypoxic Gene Expression and Metastasis', Cancer Metastasis Rev, 23 (2004), 293-310.
    18 R. D. Leek, C. E. Lewis, R. Whitehouse, M. Greenall, J. Clarke, and A. L. Harris, 'Association of Macrophage Infiltration with Angiogenesis and Prognosis in Invasive Breast Carcinoma', Cancer Res, 56 (1996), 4625-9.
    19 C. E. Lewis, R. Leek, A. Harris, and J. O. McGee, 'Cytokine Regulation of Angiogenesis in Breast Cancer: The Role of Tumor-Associated Macrophages', J Leukoc Biol, 57 (1995), 747-51.
    20 C. E. Lewis, and J. W. Pollard, 'Distinct Role of Macrophages in Different Tumor Microenvironments', Cancer Res, 66 (2006), 605-12.
    21 E. Y. Lin, A. V. Nguyen, R. G. Russell, and J. W. Pollard, 'Colony-Stimulating Factor 1 Promotes Progression of Mammary Tumors to Malignancy', J Exp Med, 193 (2001), 727-40.
    22 J. R. Mackey, R. S. Kerbel, K. A. Gelmon, D. M. McLeod, S. K. Chia, D. Rayson, S. Verma, L. L. Collins, A. H. Paterson, A. Robidoux, and K. I. Pritchard, 'Controlling Angiogenesis in Breast Cancer: A Systematic Review of Anti-Angiogenic Trials', Cancer Treat Rev (2012).
    23 A. Mantovani, P. Allavena, S. Sozzani, A. Vecchi, M. Locati, and A. Sica, 'Chemokines in the Recruitment and Shaping of the Leukocyte Infiltrate of Tumors', Semin Cancer Biol, 14 (2004), 155-60.
    24 S. Onodera, K. Suzuki, T. Matsuno, K. Kaneda, M. Takagi, and J. Nishihira, 'Macrophage Migration Inhibitory Factor Induces Phagocytosis of Foreign Particles by Macrophages in Autocrine and Paracrine Fashion', Immunology, 92 (1997), 131-7.
    25 A. J. Rees, 'Monocyte and Macrophage Biology: An Overview', Semin Nephrol, 30 (2010), 216-33.
    26 A. Sampson-Johannes, and J. A. Carlino, 'Enhancement of Human Monocyte Tumoricidal Activity by Recombinant M-Csf', J Immunol, 141 (1988), 3680-6.
    27 G. Solinas, S. Schiarea, M. Liguori, M. Fabbri, S. Pesce, L. Zammataro, F. Pasqualini, M. Nebuloni, C. Chiabrando, A. Mantovani, and P. Allavena, 'Tumor-Conditioned Macrophages Secrete Migration-Stimulating Factor: A New Marker for M2-Polarization, Influencing Tumor Cell Motility', J Immunol, 185 (2010), 642-52.
    28 C. Sunderkotter, M. Goebeler, K. Schulze-Osthoff, R. Bhardwaj, and C. Sorg, 'Macrophage-Derived Angiogenesis Factors', Pharmacol Ther, 51 (1991), 195-216.
    29 N. Takeda, E. L. O'Dea, A. Doedens, J. W. Kim, A. Weidemann, C. Stockmann, M. Asagiri, M. C. Simon, A. Hoffmann, and R. S. Johnson, 'Differential Activation and Antagonistic Function of Hif-{Alpha} Isoforms in Macrophages Are Essential for No Homeostasis', Genes Dev, 24 (2010), 491-501.
    30 S. Tsutsui, K. Yasuda, K. Suzuki, K. Tahara, H. Higashi, and S. Era, 'Macrophage Infiltration and Its Prognostic Implications in Breast Cancer: The Relationship with Vegf Expression and Microvessel Density', Oncol Rep, 14 (2005), 425-31.
    31 J. M. Wang, J. D. Griffin, A. Rambaldi, Z. G. Chen, and A. Mantovani, 'Induction of Monocyte Migration by Recombinant Macrophage Colony-Stimulating Factor', J Immunol, 141 (1988), 575-9.
    32 S. C. Wang, J. H. Hong, C. Hsueh, and C. S. Chiang, 'Tumor-Secreted Sdf-1 Promotes Glioma Invasiveness and Tam Tropism toward Hypoxia in a Murine Astrocytoma Model', Lab Invest, 92 (2012), 151-62.
    33 S. M. Weis, and D. A. Cheresh, 'Pathophysiological Consequences of Vegf-Induced Vascular Permeability', Nature, 437 (2005), 497-504.
    34 ———, 'Tumor Angiogenesis: Molecular Pathways and Therapeutic Targets', Nat Med, 17 (2011), 1359-70.
    35 S. Willenborg, T. Lucas, G. van Loo, J. A. Knipper, T. Krieg, I. Haase, B. Brachvogel, M. Hammerschmidt, A. Nagy, N. Ferrara, M. Pasparakis, and S. A. Eming, 'Ccr2 Recruits an Inflammatory Macrophage Subpopulation Critical for Angiogenesis in Tissue Repair', Blood (2012).
    36 S. P. Zielske, D. L. Livant, and T. S. Lawrence, 'Radiation Increases Invasion of Gene-Modified Mesenchymal Stem Cells into Tumors', Int J Radiat Oncol Biol Phys, 75 (2009), 843-53.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE