簡易檢索 / 詳目顯示

研究生: 江志偉
Jhih-Wei Jiang
論文名稱: 散熱模組之熱阻值快速預測理論分析與量測
A Quick Thermal Test Theory (Q.T.T.) for Coolers and Thermal Modules
指導教授: 林唯耕
Wei-Keng Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 131
中文關鍵詞: 散熱模組熱阻
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前,電腦所利用的散熱元件皆脫離不了使用散熱模組,而散熱模組的效能則是取決於其本身的熱阻值,現今市面上多有結構複雜且加裝熱管的散熱模組,往往其良率不是很穩定,所以出廠的檢測是必要的,而傳統方法須單機七、八十台且等待時間長,並不符合經濟效應。本文主要目的,在提供一套創新且能快速預測散熱模組之熱阻值的理論及量測平台,並使量測儀器操作連續化,以便使其適用於大量生產散熱模組的單位供快速檢測。另外,針對理論預測值與傳統標準量測法做比較,獲取相較誤差值作為其可靠度驗證和不同散熱模組之間的差異做討論。
    經由本文研究開發出的量測平台與理論,從實驗結果驗證比較後發現,此法所得之熱阻值與傳統量測法誤差在5%以內,散熱模組於六個工作站之實驗重現性也在10%之內,測試時間能有效的在300秒內完成,操作及等待時間則可大大縮小至30 秒內完成。大幅改善傳統法往往需費時30分鐘以上的缺點。


    At present, cooling technologies for most computer products reply on coolers and thermal modules are more and more important. The abilities of heat removal of coolers and thermal modules depend on the thermal resistance. Advanced cooling technologies in the form of heat pipes are already widely used during this decade. However, the full test for all the components does mean the thermal modules set or the cooler not defect. In another word, the full test procedures for the thermal modules or the cooler in the factories are necessary. Normally, completing the thermal resistance measurement takes a long time which is above 30 minutes traditionally. In this paper, we propose a quick thermal test theory and novel instrument that have been developed for measuring the thermal resistance of coolers and thermal modules. The continue type design can achieve the thermal resistance measurement on the mass production line. In order to obtain the compared deviation, the comparisons between theoretical prediction and traditional standard method are also focus in this study. In addition, this study also discusses the reliability in different coolers.
    The method is based on the evaluation of the thermal resistance, obtained by the Q.T.T. theory. The standard deviation of experiment results is in about 5%. The repeatability of experiment results is within 10%. This instrument can accomplish measurement effectively in 30 seconds. In conclusion, the main advantages of this method are the simplicity and speedy.

    摘要 ……………………………………………………………… I 誌謝 ……………………………………………………………… III 目錄 ……………………………………………………………… IV 圖目錄 …………………………………………………………… VII 表目錄 …………………………………………………………… X 符號說明 ………………………………………………………… XV 第一章 緒論 1 1-1 前言 ………………………………………………………… 1 1-2 研究動機與目的 …………………………………………… 4 1-3 文獻回顧 …………………………………………………… 6 1-4 章節概述 …………………………………………………… 8 第二章 原理分析與理論模式 9 2-1 熱阻的定義 ………………………………………………… 9 2-2 傳統熱阻量測方法 …………………………………………… 11 2-3 Q.T.T.創新熱阻量測理論 …………………………………… 13 2-4 加熱器之熱損失測定法 ……………………………………… 21 第三章 實驗設備與方法 23 3-1 實驗設備 …………………………………………………… 23 3-1.1 模擬微處理器發熱之加熱器設計製作 …………………… 23 3-1.2 模擬真實扣具壓力之壓力製具設計 ……………………… 26 3-1.3 電源供應器與訊號接受 …………………………………… 28 3-1.4 可程式邏輯控制器應用與電腦控制 …………………… … 31 3-1.5 Q.T.T.設計量測平台整合主體架構 ……………………… 33 3-1.6 Q.T.T.快速量測系統 …………………………………… 35 3-2 實驗步驟 …………………………………………………… 36 3-2.1傳統熱阻量測操作流程 …………………………………… 36 3-2.2 Q.T.T.快速量測操作流程 ………………………………… 38 3-2.3 Q.T.T.快速量測操作注意事項 ……………………… …… 41 3-3 實驗裝置圖 ………………………………………………… 42 第四章 實驗結果與討論 47 4-1 實驗重現性結果與討論 …………………………………… 47 4-2 實驗加熱器之比較熱損失測定結果與討論 ……………… 52 4-3 六個工作站量測結果之一致性討論 ……………………… 61 4-4 Q.T.T.量測結果與傳統量測誤差討論 …………………… 80 4-5 Q.T.T.量測結果與討論 …………………………………… 111 第五章 結論與未來工作 114 5-1 結論 ………………………………………………………… 114 5-2 未來研究目標 …………………………………………… 115 參考文獻 116 附錄A Q.T.T.測試系統軟體操作手冊 118

    [1] “Intel Silicon Innovation:Fueling New Solutions for the Digital Planet,” http://www.intel.com/technology.
    [2] http://www.intel.com.tw.
    [3] Ravi S. Prasher, Je-Young Chang, Ioan Sauciuc, Sridhar Narasimhan, David Chau, Greg Chrysler, Alan Myers, Suzan Prstic, Chuan Hu, “Nano and Micro Technology–Based Next–Generation Package- Level Cooling Solutions,” Intel Technology Journal, Volum 9, Issure 4, 2005.
    [4] 王啟川,「擴散阻抗與接觸阻抗介紹」,熱管理產業通訊,第2期。
    [5] Michael J. Ellsworth, “Chip Power Density and Module Cooling Technology Projections for The Current Decade,” Inter Society Conference on Thermal Phenomena, 2004.
    [6] Richard C. Chu, Robert E. Simons, Michael J. Ellsworth, Roger R. Schmidt, and Vincent Cozzolino, “Review of Cooling Technologies for Computer Products,” IEEE Transactions on device and materials reliability, vol. 4, no. 4, December, 2004.
    [7] Oettinger, F. F., Blackburn, D. L.”Thermal Resistance Measurements,”NIST Special Publication 400-86 from Series on Semiconductor Measurement Technology, July, 1990.
    [8] Intel(r) Pentium(r) 4 Processor in the 478-Pin Package Thermal Design Guidelines, January 2002, Document Number:249889-002 .
    [9] 徐富德,「CPU Cooler熱阻測試模擬系統之設計與研發」,碩士論文,國立清華大學工程與系統科學研究所,六月,2001。
    [10] M. O’ Flaherty*, C. Cahill, K. Rodgers and O. Slattery, “Thermal resistance measurement protocols,” Microelectronics Journal 29, 1998, pp.199-208.
    [11] B. Terry Beck, “Demonstrations Of Transient Conduction Heat Flux Phenomena For The Engineering Laboratory,” 32nd ASEE/IEEE Frontiers in Education Conference, Boston, 2002.
    [12] J. C. Bokar, L. Silverberg and M. N. Ozisik, “An engineering foundation for controlling heat transfer in one-dimensional transient heat conduction problems,” Int. Comm. Heat Mass Transfer, Vol. 22, No. 6, pp.849-858, 1995.
    [13] Yi-Hsiang Cheng and Wei-Keng Lin, “A Novel Quick Thermal Test Method and Mechanism for Coolers and Thermal Modules”, The 1st IEEE Technical Exhibition Based Conference on Robotics and Automation, Tokyo, Japan, Nov. 2004. PP. 87-88 .

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE