簡易檢索 / 詳目顯示

研究生: 阮德勇
NGUYEN DUC DUNG
論文名稱: 石墨烯合成與透明可撓式導電膜,有機汙染物吸收及場發射性能應用之研究
Synthesis of graphene and its application for flexible and transparent conductors, organic contaminant absorbents, and electron field emitters
指導教授: 戴念華
Tai, Nyan-Hwa
口試委員: 李三保
Lee, San-Boh
闕郁倫
Chueh, Yu-Lun
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 122
中文關鍵詞: 石墨烯透明可撓式導電膜場發射汙染物吸收
外文關鍵詞: graphene, flexible and transparent conductors, electron field emitters, contaminant absorbents
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The PhD is Vietnamese, the publication is in English.


    Graphene is defined as a flat monolayer of sp2-hybridized carbon atoms tightly
    packed into a two-dimensional (2D) honeycomb structure. This stringently 2D
    material exhibits a broad range of extraordinary properties, such as excellent
    electrical and thermal conductivities, and extremely high strength, which hold
    great promises in a variety of applications in micro/nanoelectronics, composites,
    and clean energy. Of special interests are the physicochemical properties of
    graphene materials strongly dependent on synthetic methods, resulting in diverse
    practical uses employed. This dissertation mainly aims to develop new approaches
    for production of graphene materials using wet chemistry as well as chemical
    vapor deposition (CVD) methods. Subsequently, the as-synthesized graphene
    materials are employed for applications as flexible and transparent conductors, a
    key component for removal of organic contaminants (including oils or organic
    solvents) from water, a supporting barrier for growth of carbon nanotubes (CNTs),
    and effective fillers for enhancing electron field emission performance of a vacuum
    filtered CNT film.
    Generally, exfoliation of graphite into graphene sheets by wet chemistry
    approaches require intercalating chemicals into interspaces of graphite layers
    followed by harsh oxidation and reduction or selecting a solvent with surface
    tension close to that of graphite. In our approach, we prepared ethanol soluble fewlayer
    graphene nanosheets (FLGs) without adopting the common receipts, thus
    avoided using toxic oxidizing/reducing agents or poisonous solvents. Atomic force
    microscopy and high-resolution transmission electron microscopy studies reveal
    that FLGs have average thicknesses in the range of 2.6–2.8 nm, corresponding to
    8–9 layers. A graphene/nafion composite film has a sheet resistance of 9.70 kΩsq-1
    at the transmittance of 74.5% (at 550 nm) while the nafion film on polyethylene
    II
    terephthalate has a sheet resistance of 128 kΩsq-1 at transmittance of 90.0%. For
    the cycling/bending test, almost no change in resistance was exhibited when the
    film was bent at an angle up to 1400, and no obvious deviation in resistance could
    be found after 100 bending cycles. In addition, a FLGs/poly(3,4-
    ethylenedioxythiophene): poly(styrenesulfonate) composite layer was
    demonstrated as the effective hole transporting layer to improve the hole
    transporting ability in an organic photovoltaic device, with which the power
    conversion efficiency was enhanced from 3.10% to 3.70%.
    We further investigated the hydrophobic properties of the ethanol soluble FLG
    material and its combination with a type of commercial sponge. The FLG films
    possess strong hydrophobic properties besides their opto/mechano-electrical
    properties aforementioned. By coating an appropriate amount of FLGs on the
    sponge skeletons with polydimethylsiloxane (PDMS) binder, superhydrophobic
    (water contact angle of ~1620) and superoleophilic (oil contact angle of ~00)
    graphene-based sponges were obtained. The as-fabricated graphene-based sponges
    perform as an efficient absorbent for a broad range of oils and organic solvents
    with high selectivity, good recyclability, and excellent absorption capacities up to
    165 times their own weight.
    In addition to wet chemistry method, we also developed a CVD method to grow
    graphene and integrate thin CNT networks on the surface of the graphene film
    using the same CVD system. The thickness of graphene and the CNT density on
    graphene surface can be controlled properly. Graphene films are demonstrated as
    an effective supporting barrier for preventing poisoning of iron nanoparticles
    which catalyze the growth of CNTs on copper substrates. Based on this method,
    the opto-electronic and field emission properties of the graphene integrated with
    CNTs can be remarkably tailored. A graphene film exhibits a sheet resistance of
    III
    2.15 kΩsq-1 with a transmittance of 85.6% (at 550 nm) while a CNT–graphene
    hybrid film shows an improved sheet resistance of 420 Ωsq-1 with an optical
    transmittance of 72.9%. Moreover, CNT–graphene films reveal as effective
    electron field emitters with low turn-on and threshold electric fields of 2.9 and 3.3
    Vμm-1, respectively.
    In order to combine the merits of the two-dimensional graphene and onedimensional
    CNT nanocarbon materials, many efforts have recently been made to
    obtain graphene-CNT hybrid materials or composites. Most studies on these hybrid
    materials focused on optoelectronic and electrical properties. Several attempts to
    create ohmic contact between CVD grown graphene and CNTs to enhance the field
    emission properties have been investigated. However, no studies utilizing reduced
    graphene oxide (RGO) nanosheets as the conductive fillers as well as the
    secondary emitters for enhancing field emission performance of CNT film have
    been reported to date. Herein, the composite films composing of CNTs and
    chemically reduced graphene nanosheets were fabricated using the vacuum
    filtration method. Compared to other processing methods such as chemical vapor
    deposition, electrophoresis, or screen-printing, this method is more beneficial for
    fabrication of low-cost field emitters with density controllable and additive
    avoidable. The composite films with different weight ratios between CNTs and
    graphene oxide (GO) are prepared by varying the volumes of CNTs and GO
    dispersions. The results show that the composite film with GO:CNT weight ratio of
    1:3 after hydrazine treatment reveals the best field emission performance with low
    turn on and threshold fields of 2.82 and 2.98 V/μm, respectively.

    Table of contents..I Acknowledgements..V List of Acronyms and Abbreviations..VI Abstract..VIII 1. Introduction ..1 2. Properties and applications of graphene materials..4 2.1. Morphological and structural Properties………………………………...4 2.2. Physical properties of Graphene………………………………………..…6 2.2.1. Electrical property……………………………………………………..…6 2.2.2. Optical property……………………………………………………….…7 2.2.3. Mechanical property……………………………………………………..9 2.3. Applications………………………………………………………………..10 2.3.1. Flexible and transparent conductors…………………..………………10 2.3.2. Electron field emission...………………………………………………..13 2.3.3. Others……………………………………………………………………14 3. Synthesis and characterization of graphene materials…………..17 3.1. Synthesis methods…………………………………………………………17 3.1.1. Mechanical and chemical exfoliation…………………………………..17 3.1.2. Chemical vapor deposition……………………………………………..20 3.1.3. Reduction of graphene oxide…………………………………………...24 3.2. Characterization techniques…………………………………………...…27 3.2.1. Optical microscopy……………………………………………………...28 3.2.2. Atomic force microscopy……………………………………………......29 3.2.3. Transmission electron microscopy……………………………………..32 3.2.4. Raman spectroscopy…………………………………………………….33 4. Synthesis of ethanol soluble few-layer graphene nanosheets for flexible and transparent conducting composite films………………36 4.1. Research background…………………………………………………….36 4.2. Experiments……………………………………………………………….37 4.2.1. Preparation of expanded graphite (EG)……………………………….37 4.2.2. Preparation of few-layer graphene nanosheets (FLGs)………………38 4.2.3. Characterizations………………………………………………………..39 4.2.4. Fabrication of photovoltaic device……………………………………..39 4.3. Results & discussion……………………………………………………....40 4.4. Conclusions………………………………………………………………...52 5. Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method……….54 5.1. Research background…………………………………………………….54 5.2. Experiments……………………………………………………………….56 5.2.1. Preparation of hydrophobic graphene nanosheets……………………56 5.2.2. Characterizations………………………………………………………..56 5.2.3. Absorption capacity measurement……………………………………..56 5.3. Results & discussion……………………………………………………...57 5.4. Conclusions………………………………………………………………...65 6. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters………………………………………………………………...67 6.1. Research background…………………………………………………….67 6.2. Experiments……………………………………………………………….69 6.2.1. Growth of graphene films………………………………………………69 6.2.2. Growth of carbon nanotubes on graphene films……………………...70 6.2.3. Transfer of graphene and graphene-carbon nanotubes films………..70 6.2.4. Sample characterizations……………………………………………….71 6.2.5. Field emission measurement……………………………………………71 6.3. Results & discussion ...................................................................................71 6.4. Conclusions...................................................................................................83 7. Enhanced field emission properties of vacuum filtered carbon nanotube film using reduced graphene oxide nanosheets.................85 7.1. Research background……………………………………………………..85 7.2. Experiments……………………………………………………………….86 7.2.1. Preparation of graphene oxide………………………………………....86 7.2.2. Preparation of carbon nanotube dispersions………………………….87 7.2.3. Preparation of carbon nanotube-reduced graphene oxide composite films……………………………………………………………………………….87 7.2.4. Sample characterizations………………………………………………88 7.3. Results & discussion……………………………………………………...89 7.4. Conclusions………………………………………………………………...96 8. Conclusions and outlook…………………………………………..97 8.1. Conclusions………………………………………………………………...97 8.2. Outlook for future work…………………………………………………..99 References.……………………………………………………………….……...101 Publications……………………………………………………………………..119

    (3), 902 (2008).
    [6] M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An and R. S. Ruoff. Graphene-based
    Ultracapacitors. Nano Lett. 8 (10), 3498 (2008).
    [7] A. Fasolino, J. H. Los, M. I. Katsnelson. Intrinsic ripples in graphene. Nat.
    Mater. 6, 858 (2007).
    [8] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S.
    Roth. Nature, 446, 60 (2007).
    [9] E. Stolyarova, K. T. Rim, S. M. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T. F.
    Heinz, M. S. Hybertsen, G. W. Flynn. High-resolution scanning tunneling
    microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc.
    Nat. Acad. Sci. USA, 104, 9209 (2007).
    [10] J. C. Meyer, C. O. Girit, M. F. Crommie, A. Zettl. Imaging and dynamics of
    light atoms and molecules on graphene. Nature, 454, 319 (2008).
    [11] C. O. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C.
    H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, A. Zettl. Graphene at the
    Edge: Stability and Dynamics. Science, 323, 1705 (2009).
    102
    [12] X. T. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. Campos-Delgado, J. M.
    Romo-Herrera, H. B. Son, Y. P. Hsieh, A. Reina, J. Kong, M. Terrones, M. S.
    Dresselhaus. Controlled Formation of Sharp Zigzag and Armchair Edges in
    Graphitic Nanoribbons. Science, 323, 1701 (2009).
    [13] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I.
    V. Grigorieva, S. V. Dubonos & A. A. Firsov, Two-dimensional gas of massless
    Dirac fermions in graphene, Nature, 438, 197-200 (2005).
    [14] K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, P. Kim . Temperature
    dependent transport in suspended graphene. Phys. Rev. Lett. 101(9):096802
    (2008).
    [15] X. Du, I. Skachko, A. Barker, E. Y. Andrei. Approaching ballistic transport in
    suspended graphene. Nat. Nanotechnol., 3(8):491–5 (2008).
    [16] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T.
    Stauber, et al. Fine structure constant defines visual transparency of graphene.
    Science 320(5881):1308 (2008).
    [17] C. Gomez-Navarro, M. Burghard, K. Kern. Elastic properties of chemically
    derived single graphene sheets. Nano Letters 2008;8(7):2045–9 (2008).
    [18] J. S. Bunch JS, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M.
    Tanenbaum, J. M. Parpia, et al. Electromechanical resonators from graphene
    sheets. Science, 315(5811):490–3 (2007).
    [19] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace. Processable
    aqueous dispersions of graphene nanosheets. Nat. Nanotechnol., 3, 101 (2008).
    [20] X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. Wang, H. J. Dai.
    Highly conducting graphene sheets and Langmuir–Blodgett films. Nat.
    Nanotechnol., 3, 538 (2008).
    [21] S. Biswas, L. T. Drzal. A Novel Approach to Create a Highly Ordered
    Monolayer Film of Graphene Nanosheets at the Liquid−Liquid Interface. Nano
    Lett., 9, 167 (2009).
    [22] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T.
    McGovern, B. Holland, M. Byrne, Y. K. Gun’ko, J. J. Boland, P. Niraj, G.
    Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison , V. Scardaci, A. C.
    103
    Ferrari, J. N. Coleman. High-yield production of graphene by liquid-phase
    exfoliation of graphite. Nat. Nanotechnol., 3, 563 (2008).
    [23] X. Wang, L. J. Zhi, K. Mullen. Transparent, Conductive Graphene Electrodes
    for Dye-Sensitized Solar Cells. Nano Lett., 8, 323 (2008).
    [24] P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L.
    A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, K. S.
    Novoselov, Nano Lett., 8, 1704 (2008).
    [25] J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans.
    Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent
    Electrodes. ACS Nano, 4, 43 (2009).
    [26] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P.
    Kim, J. Y. Choi, B. H. Hong. Large-scale pattern growth of graphene films for
    stretchable transparent electrodes. Nature, 457, 706 (2009).
    [27] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L.
    Colombo, R. S. Ruoff. Transfer of Large-Area Graphene Films for High-
    Performance Transparent Conductive Electrodes. Nano Lett., 9, 4359 (2009).
    [28] J. H. Chen, C. Jang, S. D. Xiao, M. Ishigami, M. S. Fuhrer. Intrinsic and
    extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol., 3,
    206 (2008).
    [29] G. Eda, H. E. Unalan, N. Rupesinghe, G. A. J. Amartunga, and M. Chhowalla.
    Field emission from graphene based composite films. Appl. Phy. Lett., 93, 233502
    (2008).
    [30] Z. S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, and H.M.
    Cheng. Field emission from single layer graphene films prepared by
    electrophoretic deposition. Adv. Mater., 21, 1756 (2009).
    [31] A. Malesevic, R. Kemps, A. Vanhulsel, M. P. Chowdhury, A. Volodin, and C.
    V. Haesendonck. Field emission from vertically aligned few-layer graphene. J.
    Appl. Phys., 104, 084301 (2008).
    [32] X. L. Li, X. R. Wang, L. Zhang, S. W. Lee, H. J. Dai. Chemically Derived,
    Ultrasmooth Graphene Nanoribbon Semiconductors. Science, 319, 1229 (2008).
    104
    [33] S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D. H.
    Lee, F. Guinea, A. H. C. Neto, A. Lanzara. Substrate-induced bandgap opening in
    epitaxial graphene. Nat. Mater., 6, 770 (2007).
    [34] F. Schedin, A. K. Geim, S. V. Morozov, et al. Detection of individual gas
    molecules adsorbed on grapheme. Nature Materials, 6(9): 652–655 (2007).
    [35] N. Mohanty and V. Berry. Graphene-based single-bacterium resolution
    biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and
    microscale biocomponents. Nano Letters, 2008, 8 (12): 4469–4476 (2008).
    [36] B. Lamg, A LEED study of the deposition of carbon on platinum crystal
    surfaces, Surface Sci., 53, 317 (1975).
    [37] E. Rokuta, Y. Hasegawa, A. Itoh, K. Yamashita, T. Tanaka, S. Otani, and C.
    Oshima, Vibrational spectra of the monolayer films of hexagonal boron nitride and
    graphite on faceted Ni(755), Surface Sci., 427, 97 (1999).
    [38] H. Shioyama. Cleavage of graphite to graphene, J. Mat. Sci. Lett., 20, 499
    (2001).
    [39] V. Huc, N. Bendiab, N. Rosman, T. Ebbesen, C. Delacour, and V. Bouchiat.
    Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation
    of highly oriented pyrolytic graphite. Nanotechnology, 19, 455601 (2008).
    [40] A. Shukla, R. Kumar, J. Mazher, and A. Balan, Graphene made easy: high
    quality large-area samples, Solid State Commun., 149, 718 (2009).
    [41] M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson,
    F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg and J. N. Coleman.
    Liquid Phase Production of Graphene by Exfoliation of Graphite in
    Surfactant/Water Solutions. J. Am. Chem. Soc., 2009, 131, 3611–3620 (2009).
    [42] M. Zhang, R. R. Parajuli, D. Mastrogiovanni, B. Dai, P. Lo, W. Cheung, R.
    Brukh, P. L. Chiu, T. Zhou, Z. Liu, E. Garfunkel and H. He. Production of
    Graphene Sheets by Direct Dispersion with Aromatic Healing Agents. Small, 6,
    1100–1107 (2010).
    [43] R. Hao, W. Qian, L. Zhang and Y. Hou. Aqueous dispersions of TCNQanion-
    stabilized graphene sheets. Chem. Commun., 6576–6578 (2008).
    105
    [44] C. E. Hamilton, J. R. Lomeda, Z. Sun, J. M. Tour and A. R. Barron. High-
    Yield Organic Dispersions of Unfunctionalized Graphene. Nano Lett., 9, 3460–
    3462 (2009).
    [45] J. H. Lee, D. W. Shin, V. G. Makotchenko, A. S. Nazarov, V. E. Fedorov, Y.
    H. Kim, J.-Y. Choi, J. M. Kim and J.-B. Yoo. One-Step Exfoliation Synthesis of
    Easily Soluble Graphite and Transparent Conducting Graphene Sheets. Adv.
    Mater., 21, 4383–4387 (2009).
    [46] U. Khan, A. O’Neill, M. Lotya, S. De and J. N. Coleman. High-Concentration
    Solvent Exfoliation of Graphene. Small, 6, 864–871 (2010).
    [47] M. Choucair, P. Thordarson and J. A. Stride. Gram-scale production of
    graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol., 4,
    30–33 (2008).
    [48] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin.
    Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon,
    45, 2017 (2007).
    [49] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei. Graphene
    segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett., 93,
    113103 (2008).
    [50] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and
    J. Kong. Large area few-layer graphene films on arbitrary substrates by chemical
    vapor deposition. Nano Lett., 9, 30 (2009).
    [51] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, et al., Large-area
    synthesis of high-quality and uniform graphene films on copper foils. Science, 324,
    1312 (2009).
    [52] A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey,
    J. Bokor and Y. Zhang. Direct Chemical Vapor Deposition of Graphene on
    Dielectric Surfaces. Nano Lett., 2010, 10, 1542 (2010).
    [53] M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg and J. Park. Transfer-Free Batch
    Fabrication of Single Layer Graphene Transistors. Nano Lett., 9, 4479 (2009).
    106
    [54] W. Cai, Y. Zhu, X. Li, R. D. Piner and R. S. Ruoff. Large area few-layer
    graphene/graphite films as transparent thin conducting electrodes. Appl. Phys.
    Lett., 95, 123115 (2009).
    [55] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V.
    Tendeloo, A. Vanhulsel and C. V. Haesendonck. Synthesis of few-layer graphene
    via microwave plasma-enhanced chemical vapour deposition. Nanotechnology, 19,
    305604 (2008).
    [56] E. Dervishi, Z. Li, F. Watanabe, A. Biswas, Y. Xu, A. R. Biris, V. Saini and
    A. S. Biris. Large-scale graphene production by RF-cCVD method. Chem.
    Commun., 4061–4063 (2009).
    [57] G. Nandamuri, S. Roumimov and R. Solanki. Chemical Vapor deposition of
    graphene films. Nanotechnology, 21, 145604 (2010).
    [58] H. He, J. Klinowski, M. Forster and A. Lerf. A new structural model for
    graphite oxide. Chem. Phys. Lett. 287, 53–56 (1998).
    [59] S. Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical
    reduction of exfoliated graphite oxide. Carbon, 45, 1558–1565 (2007).
    [60] R. Muszynski, B. Seger and P. V. Kamat. Decorating graphene sheets with
    gold nanoparticles. J. Phys. Chem. C 112, 5263–5266 (2008).
    [61] H. C. Schniepp, et al. Functionalized single graphene sheets derived from
    splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006).
    [62] S. Stankovich, et al. Graphene-based composite materials. Nature 442, 282–
    286 (2006).
    [63] S. Stankovich, et al. Stable aqueous dispersions of graphitic nanoplatelets via
    the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-
    styrenesulfonate). J. Mater. Chem. 16, 155–158 (2006).
    [64] P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, et al.
    Making graphene visible. Appl. Phys. Lett., 91(6):063124 (2007).
    [65] L. Gao, W. Ren, F. Li, H. M. Cheng. Total color difference for rapid and
    accurate identification of graphene. ACS Nano, 2(8):1625–33 (2008).
    107
    [66] J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, A. Zettl.
    Direct imaging of lattice atoms and topological defects in graphene membranes.
    Nano Letters, 8(11):3582–6 (2008).
    [67] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, et al.,
    High-yield production of graphene by liquid-phase exfoliation of graphite. Nat.
    Nanotechnol., 3, 563-568, (2008).
    [68] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S.
    Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim. Raman Spectrum of
    Graphene and Graphene Layers. Phys. Rev. Lett., 97, 187401 (2006).
    [69] Y. Y. Wang, Z. H. Ni, T. Yu, Z. X. Shen, H. M. Wang, Y. H. Wu, W. Chen,
    A. T. S. Wee. Raman Studies of Monolayer Graphene: The Substrate Effect. J.
    Phys. Chem. C, 112, 10637 (2008).
    [70] J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J.
    Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L.
    Myers-Ward, C. R. Eddy, D. K. Gaskill. Correlating Raman Spectral Signatures
    with Carrier Mobility in Epitaxial Graphene: A Guide to Achieving High Mobility
    on the Wafer Scale. Nano Lett., 9, 2873 (2009).
    [71] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat. Mat., 6, 183
    (2007)
    [72] J. H. Lee, D. W. Shin, V. G. Makotchenko, A. S. Nazarov, V. E. Fedorov, J.
    H. Yoo, S. M. Yu, J. Y. Choi, J. M. Kim and J. B. Yoo. The superior dispersion of
    easily soluble graphite. Small, 6, 58 (2010).
    [73] J. H. Lee, D. W. Shin, V. G. Makotchenko, A. S. Nazarov, V. E. Fedorov, Y.
    H. Kim, J. Y. Choi, J. M. Kim and J. B. Yoo. One-Step Exfoliation Synthesis of
    Easily Soluble Graphite and Transparent Conducting Graphene Sheets. Adv.
    Mater. 21, 4383 (2009).
    [74] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N.
    Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer. Ultrathin Epitaxial
    Graphite: 2D Electron Gas Properties and a Route toward Graphene-based
    Nanoelectronics. J. Phys. Chem. B, 108, 19912 (2004).
    108
    [75] A. Srivastava, C. Galande, L. Ci, L. Song, C. Rai, D. Jariwala, K. F Kelly and
    P. M. Ajayan. Novel Liquid Precursor-Based Facile Synthesis of Large-Area
    Continuous, Single, and Few-Layer Graphene Films. Chem. Mater., 22, 3457
    (2010).
    [76] W. Cai, Y. Zhu, X. Li, R. D. Piner and R. S. Ruoff. Large area few-layer
    graphene/graphite films as transparent thin conducting electrodes. App. Phys. Lett.
    95, 123115 (2009).
    [77] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and
    J. Kong. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by
    Chemical Vapor Deposition. Nano Lett., 9, 30 (2009).
    [78] X. Wang, L. Zhi and L. Mullen. Transparent, Conductive Graphene
    Electrodes for Dye-Sensitized Solar Cells. Nano Lett., 8, 323 (2008).
    [79] P. Blake, et al. Graphene-Based Liquid Crystal Device. Nano Lett., 8, 1704
    (2008).
    [80] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y.
    Jia, Y. Wu, S. B. T. Nguyen and R. S. Ruoff. Synthesis of graphene-based
    nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 4, 1558
    (2007).
    [81] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. H. Alonso, D. H.
    Adamson, R. K. Prud'homme, R. Car, D. A. Saville and I. A. Aksay.
    Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J.
    Phys. Chem. B, 110, 8535 (2006).
    [82] Li X, Zhang G, Bai X, Sun X, Wang X, Wang E and Dai H 2008 Highly
    conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotech., 3, 538
    (2008).
    [83] H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao and Y. Chen.
    Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent
    Conductors. ACS Nano., 2, 463 (2008).
    [84] Y. Hernandez, et al. High-yield production of graphene by liquid-phase
    exfoliation of graphite. Nat. Nanotechnol. 3, 563 (2008).
    109
    [85] J. Chattopadhyay, A. Mukherjee, S. Chakraborty, J. H. Kang, P. J. Loos, K. F.
    Kelly, H. K. Schmidt and W. E. Billups. Exfoliated soluble graphite. Carbon, 47,
    2945 (2009).
    [86] F. Fillaux, S. Menu, J. Conard, H. Fuzellier, Parker S W, Hanon A C and
    Tomkinson J 1999 Inelastic neutron scattering study of the proton dynamics in
    HNO3 graphite intercalation compounds. Chem. Phys., 242, 273 (1999).
    [87] A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski and A. A. Bol.
    Chemical Doping of Large-Area Stacked Graphene Films for Use as Transparent,
    Conducting Electrodes. ACS Nano, 4, 3839 (2010).
    [88] R. Hao, W. Qian, L. Zhang and Y. L. Hou. Aqueous dispersions of TCNQanion-
    stabilized graphene sheets. Chem.Commum., 6576 (2008).
    [89] W. S. Kuo and H. F. Lu. Bending fracture in carbon nanotubes.
    Nanotechnology, 19, 495710 (2008).
    [90] U. J. Kim, C. A. Furtado, X. Liu, G. Chen and P. C. Eklund. Raman and IR
    Spectroscopy of Chemically Processed Single-Walled Carbon Nanotubes. J. Am.
    Chem. Soc. 127, 15437 (2005).
    [91] S. Stankovich, R. D. Piner, S. B. T. Nguyen and R. S. Ruof. Synthesis and
    exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 44, 3342
    (2006).
    [92] A. B. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri and I. Dékány.
    Graphite Oxide:Chemical Reduction to Graphite and Surface Modification with
    Primary Aliphatic Amines and Amino Acids. Langmuir, 19, 6050 (2003).
    [93] Z. Ying, X. Lin, Y. Qi and J. Luo. Preparation and characterization of lowtemperature
    expandable graphite. Materials Research Bulletin, 43, 2677 (2008).
    [94] B. T. T. Chu, G. Tobias, C. G. Salzmann, B. Ballesteros, N. Grobert, R. I.
    Todd and M. L. H. Green. Fabrication of carbon-nanotube-reinforced glass–
    ceramic nanocomposites by ultrasonic in situ sol–gel processing. J. Mater. Chem.,
    18, 5344 (2008).
    [95] Q. Li, I. A. Kinloch and A. H. Windle. Discrete dispersion of single-walled
    carbon nanotubes. Chem. Commun. 3283 (2005).
    110
    [96] J. D. J. Ingle and S. R. Crouch. Spectrochemical Analysis, Prentice Hall, New
    Jersey p 372 (1988).
    [97] A. C. Ferrari, et al., Raman Spectrum of Graphene and Graphene Layers.
    Phys. Rev. Lett., 97, 187401
    [98] L. M. Malard, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhaus. Raman
    spectroscopy in graphene. Phys. Rep. 473, 51 (2009).
    [99] S. J. Chae, et al. Synthesis of Large-Area Graphene Layers on Poly-Nickel
    Substrate by Chemical Vapor Deposition: Wrinkle Formation. Adv. Mater. 21,
    2328 (2009).
    [100] H. Ago, K. Petritsch, M. S. P. Shaffer, Windle A H and Friend R H 1999
    Composites of Carbon Nanotubes and Conjugated Polymers for Photovoltaic
    Devices. Adv. Mater. 11 1281 (1999).
    [101] B. Pradhan, S. K. Batabyal and A. J. Pal. Functionalized carbon nanotubes in
    donor/acceptor-type photovoltaic devices. Appl. Phys. Lett., 88, 093106 (2006).
    [102] G. Kalita, S. Adhikari, H. R. Aryal, M. Umeno, R. Afre, T. Soga and M.
    Sharon. Fullerene (C60) decoration in oxygen plasma treated multiwalled carbon
    nanotubes for photovoltaic application. Appl. Phys. Lett., 92, 063508 (2008).
    [103] I. Khatri, S. Adhikari, H. R. Aryal, T. Soga, T. Jimbo and M. Umeno.
    Improving photovoltaic properties by incorporating both single walled carbon
    nanotubes and functionalized multiwalled carbon nanotubes. Appl. Phys. Lett. 94,
    093509 (2009).
    [104] H. Ago, T. Kugler, F. Cacialli, W. R. Salaneck, M. S. P. Shaffer, A. H.
    Windle and R. H. Friend. Work Functions and Surface Functional Groups of
    Multiwall Carbon Nanotubes. J. Phys. Chem. B, 103, 8116 (1999).
    [105] A. J. Cascio, J. E. Lyon, M. M. Beerbom, R. Schlafa, Y. Zhu and S. A.
    Jenekhe. Investigation of a polythiophene interface using photoemission
    spectroscopy in combination with electrospray thin-film deposition. App. Phys.
    Lett., 88, 062104 (2006).
    [106] Y. H. Kim, S. H. Lee, J. Noh and S. H. Han. Performance and stability of
    electroluminescent device with self-assembled layers of poly(3,4-
    111
    ethylenedioxythiophene)–poly(styrenesulfonate) and polyelectrolytes. Thin Solid
    Films, 510, 305 (2006).
    [107] J. Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C.
    Weeks, I. Levitsky, J. Peltola and P. Glatkowski. Organic solar cells with carbon
    nanotubes replacing In2O3:Sn as the transparent electrode. Appl. Phys. Lett., 88,
    233503 (2006).
    [108] L. Feng, Z. Y. Zhang, Z. H. Mai, Y. M. Ma, B. Q. Liu, L. Jiang and D. B.
    Zhu. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the
    Separation of Oil and Water. Angew. Chem., Int. Ed., 43, 2012 (2004).
    [109] H. L. Li, J. X. Wang, L. M. Yang and Y. L. Song. Superoleophilic and
    Superhydrophobic Inverse Opals for Oil Sensors. Adv. Funct. Mater., 18, 3258
    (2008).
    [110] J. Yuan, X. Liu, O. Akbulut, J. Hu, S. L. Suib, J. Kong and F. Stellacci.
    Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol., 3,
    332 (2008).
    [111] A. Li, H. X. Sun, D. Z. Tan, W. J. Fan, S. H. Wen, X. J. Qing, G. X. Li, S.
    Y. Li and W. Q. Deng. Superhydrophobic conjugated microporous polymers for
    separation and adsorption. Energy Environ. Sci., 4, 2062 (2011).
    [112] X. C. Gui, J. Q. Wei, K. L. Wang, A. Y. Cao, H. W. Zhu, Y. Jia, Q. K. Shu
    and D. H. Wu. Carbon nanotubes sponges. Adv. Mater., 22, 617 (2010).
    [113] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat. Mater., 6, 183
    (2007).
    [114] Y. Sun, Q. Wu and G. Shi. Graphene based new energy materials. Energy
    Environ. Sci., 4, 1113 (2011).
    [115] Y. J. Shin, Y. Y. Wang, H. Huang, G. Kalon, A. T. S. Wee, Z. X. Shen, C. S.
    Bhatia and H. Yang. Wettability and Surface Free Energy of Graphene Films.
    Langmuir, 26, 3798 (2009).
    [116] J. Rafiee, M. A. Rafiee, Z. Z. Yu and N. Koratkar. Superhydrophobic to
    Superhydrophilic Wetting Control in Graphene Films. Adv. Mater., 2010, 22, 2151
    (2010).
    112
    [117] X. Zhang, S. Wan, J. Pu, L. Wang and X. Liu. Highly hydrophobic and
    adhesive performance of graphene films. J. Mater. Chem., 21, 12251 (2011).
    [118] D. D. Nguyen, N. H. Tai, Y. L. Chueh, S. Y. Chen, Y. J. Chen, W. S. Kuo,
    T. W. Chou, C. S. Hsu and L. J. Chen. Synthesis of ethanol soluble few-layer
    graphene nanosheets for flexible and transparent conducting composite films.
    Nanotechnology, 22, 295606 (2011).
    [119] D. Que´re´. Surface chemistry: Fakir droplets. Nat. Mater., 1, 14 (2002).
    [120] I. A. Larmour, S. E. J. Bell and G. C. Saunders. Remarkably Simple
    Fabrication of Superhydrophobic Surfaces Using Electroless Galvanic Deposition.
    Angew. Chem., Int. Ed., 46, 1710 (2007).
    [121] W. Barthlott and C. Neinhuis. Purity of the sacred lotus, or escape from
    contamination in biological surfaces. Planta, 202, 1 (1997).
    [122] Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, K. Qia and J. H. Xin.
    Artificial lotus leaf structures from assembling carbon nanotubes and their
    applications in hydrophobic textiles. J. Mater. Chem., 17, 1071 (2007).
    [123] B. Cortese, S. D’Amone, M. Manca, I. Viola, R. Cingolani and G. Gigli.
    Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces.
    Langmuir, 24, 2712 (2008).
    [124] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat Mater., 2007, 6,
    183–91.
    [125] C. Lee, X. D. Wei, J. W. Kysar and J. Hone, Science, 2008, 32, 385–8.
    [126] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, and S. V.
    Dubonos. Electric Field Effect in Atomically Thin Carbon Films. Science, 306,
    666-669 (2004).
    [127] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim and K. S. Kim. Largescale
    pattern growth of graphene films for stretchable transparent electrodes.
    Nature, 457, 706-710 (2009).
    [128] F. Schwierz. Graphene transistors. Nat. Nanotechnol, 5, 487-496 (2010).
    [129] C. G. Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M.
    Burghard and K. Kern. Electronic Transport Properties of Individual Chemically
    Reduced Graphene Oxide Sheets. Nano Lett., 7, 3499-3503 (2007).
    113
    [130] V. C. Tung, M. J. Allen Y. Yang, and R. B. Kaner. High-throughput solution
    processing of large-scale graphene. Nat. Nanotechnol., 4, 25 – 29 (2009).
    [131] H. Huang and X. Wang. Graphene nanoplate-MnO2 composites for
    supercapacitors: a controllable oxidation approach. Nanoscale, 3, 3185-3191
    (2011).
    [132] H. Wang, Q. Hao, X. Yang, L. Lu and X. Wang. A nanostructured
    graphene/polyaniline hybrid material for supercapacitors. Nanoscale, 2010, 2,
    2164-2170 (2010).
    [133] P. K. Ang, W. Chen, A. T. S. Wee and K. P. Loh. Solution-Gated Epitaxial
    Graphene as pH Sensor. J Am Chem Soc., 130, 14392-14393 (2008).
    [134] V. Dua, S. P. Surwade, S. Ammu, S. R. Agnihotra, S. Jain, K. E. Roberts, S.
    Park, R. S. Ruoff, and S. K. Manohar. All-Organic Vapor Sensor Using Inkjet-
    Printed Reduced Graphene Oxide. Angew. Chem. Int. Ed., 49, 2154-2157 (2010).
    [135] N. Soin, S. S. Roy, S. Roy, K. S. Hazra, D. S. Misra, T. H. Lim, C. J.
    Hetherington and J. A. McLaughlin. Enhanced and Stable Field Emission from in
    Situ Nitrogen-Doped Few-Layered Graphene Nanoflakes. J. Phys. Chem. C, 115,
    5366–5372 (2011).
    [136] R. Wang, J. Sun, L. Gao, C. Xu, J. Zhang and Y. Liu. Effective post
    treatment for preparing highly conductive carbon nanotube/reduced graphite oxide
    hybrid films. Nanoscale, 2011, 3, 904-906 (2011).
    [137] Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H.
    Hong, and J. H. Ahn. Wafer-Scale Synthesis and Transfer of Graphene Films.
    Nano Lett., 10, 490-493 (2010).
    [138] W. Cai, Y. Zhu, X. Li, R. D. Piner and R. S. Ruoff, Appl. Phys. Lett., 2007,
    95, 123115.
    [139] X. Wang, L. Zhi and K. Müllen, Nano Lett., 2008, 8, 323–327.
    [140] L. G. D. Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C.
    Zhou. Continuous, highly flexible, and transparent graphene films by chemical
    vapor deposition for organic photovoltaics. ACS Nano, 2010, 4, 2865–2873
    (2010).
    114
    [141] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L.
    Colombo and R. S. Ruoff. Transfer of Large-Area Graphene Films for High-
    Performance Transparent Conductive Electrodes. Nano Lett., 9, 4359–4363 (2009).
    [142] S. K. Bae, H. K. Kim, L. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan,
    T. Lei, H. R. Kim and Y. I. Song. Roll-to-roll production of 30-inch graphene films
    for transparent electrodes. Nat. Nanotech., 5, 574-578 (2010).
    [143] S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D. H.
    Lee, F. Guinea, A. H. Castro Neto and A. Lanzara. Substrate-induced bandgap
    opening in epitaxial graphene. Nature Materials, 6, 770 – 775 (2007).
    [144] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T.
    Stauber, N. M. R. Peres and A. K. Geim. Fine Structure Constant Defines Visual
    Transparency of Graphene. Science, 320, 1308–1308 (2008).
    [145] F. Gunes, H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi
    and Y. H. Lee. Layer-by-Layer Doping of Few-Layer Graphene Film. ACS Nano,
    4, 4595-4600 (2010).
    [146] A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski and A. A. Bol.
    Chemical doping of large-area stacked graphene films for use as transparent,
    conducting electrodes. ACS Nano, 4, 3839-3844 (2010).
    [147] Q. B. Zheng, M. M. Gudarzi, S. J. Wang, Y. Geng, Z. Li and J. K. Kim.
    Improved electrical and optical characteristics of transparent graphene thin films
    produced by acid and doping treatments. Carbon, 49, 2905-2916 (2011).
    [148] V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, and R. B.
    Kaner. Low-Temperature Solution Processing of Graphene-Carbon Nanotube
    Hybrid Materials for High-Performance Transparent Conductors. Nano Lett., 9,
    1949-1955 (2009).
    [149] Y. K. Kim and D. H. Min. Durable large-area thin films of graphene/carbon
    nanotube double layers as a transparent electrode. Langmuir, 25, 11302-11306
    (2009).
    [150] X. Dong, B. Li, A. Wei, X. Cao, M. B. Chan-Park, H. Zhang, L. J. Li, W.
    Huang and P. Chen. One-step growth of graphene-carbon nanotube hybrid
    materials by chemical vapor deposition. Carbon, 49, 2944-2949 (2011).
    115
    [151] D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H.
    Hong, W. J. Lee, R. S. Ruoff, and S. O. Kim. Versatile Carbon Hybrid Films
    Composed of Vertical Carbon Nanotubes Grown on Mechanically Compliant
    Graphene Films. Adv. Mater., 22, 1247-1252 (2010).
    [152] C. C. Chiu, N. H. Tai, M. K. Yeh, B. Y. Chen, S. H. Tseng and Y. H.
    Chang. Tip-to-tip growth of aligned single-walled carbon nanotubes under an
    electric field. J. of Crystal Growth, 290, 171-175 (2006).
    [153] C. C. Chiu, T. Y. Tsai, N. H. Tai and C. H. Lee. Growth of high-quality
    single-walled carbon nanotubes through the thermal chemical vapor deposition
    using co-sputtering Fe–Mo films as catalysts. Surface & Coatings Technology,
    2006, 3215-3219 (2006).
    [154] L. M. Malard, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhaus. Raman
    spectroscopy in graphene. Phys. Rep., 473, 51 – 87 (2009).
    [155] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son and V. Bulovic. Large Area, Few-
    Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition.
    Nano Lett., 9, 30–5 (2009).
    [156] W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames and C. N. Lau.
    Controlled ripple texturing of suspended graphene and ultrathin graphite
    membranes. Nat. Nanotechnol., 4, 562-566 (2009).
    [157] J. B. Nelson and D. P. Riley. The thermal expansion of graphite from 15°c.
    to 800°c.: part I. Experimental. Proc. Phys. Soc., 57, 477 (1945).
    [158] T. P. Ong, F. Xiong, R. H. P. Chang and C. W. J. White. Nucleation and
    growth of diamond on carbon-implanted single crystal copper surfaces. J. Mater.
    Res., 7, 2429-2439 (1992).
    [159] G. Li, S. Chakrabarti, M. Schulz and V. Shanov. Growth of aligned
    multiwalled carbon nanotubes on bulk copper substrates by chemical vapor
    deposition. J. Mater. Res., 24, 2813–2820 (2009).
    [160] I. Lahiri, R. Seelaboyina, J. Y. Hwang, R. Banerjee and W. Choi. Enhanced
    field emission from multi-walled carbon nanotubes grown on pure copper
    substrate. Carbon, 48, 1531-1538 (2010).
    116
    [161] R. T, K. Baker. Catalytic growth of carbon filaments. Carbon, 27, 315-323
    (1989).
    [162] H. Kanzow and D. Ding. Formation mechanism of single-wall carbon
    nanotubes on liquid-metal particles. Phys. Rev. B, 11180 (1999).
    [163] S. De and J. N. Coleman. Are There Fundamental Limitations on the Sheet
    Resistance and Transmittance of Thin Graphene Films. ACS Nano, 4, 2713-2720
    (2010).
    [164] Q. Zheng, W. H. Ip, X. Lin, N. Yousefi, K. K. Yeung, Z. Li and J. K. Kim.
    Transparent Conductive Films Consisting of Ultralarge Graphene Sheets Produced
    by Langmuir–Blodgett Assembly. ACS Nano, 5, 6039-6051 (2011).
    [165] J. Kim, M. Ishihara, Y. Koga, K. Tsugawa, M. Hasegawa, and S. Iijima.
    Low-temperature synthesis of large-area graphene-based transparent conductive
    films using surface wave plasma chemical vapor deposition. Appl. Phys. Lett., 98,
    091502 (2011).
    [166] J. H. Huang, J. H. Fang, C. C. Liu and C. W. Chu. Effective Work Function
    Modulation of Graphene/Carbon Nanotube Composite Films As Transparent
    Cathodes for Organic Optoelectronics. ACS Nano, 5, 6262-6271 (2011).
    [167] T. K. Hong, W. D. Lee, H. J. Choi, H. S. Shin and B. S. Kim. Transparent,
    Flexible Conducting Hybrid Multilayer Thin Films of Multiwalled Carbon
    Nanotubes with Graphene Nanosheets. ACS Nano, 4, 3861–3868 (2010).
    [168] J. Zhang, T. Feng, W. Yu, X. Liu, X. Wang and Q. Li. Enhancement of field
    emission from hydrogen plasma processed carbon nanotubes. Diamond Relat.
    Mater., 13, 54–9 (2004).
    [169] B. Ha, D. H. Shin, J. Park, and C. J. Lee. Electronic Structure and Field
    Emission Properties of Double-Walled Carbon Nanotubes Synthesized by
    Hydrogen Arc Discharge. J. Phys. Chem. C, 112, 430–435 (2008).
    [170] H. Yang, X. F. Shang, Z. H. Li, S. X. Qu, Z. Q. Gu, Y. B. Xu and M. Wang.
    Synthesis of large-area single-walled carbon nanotube films on glass substrate and
    their field electron emission properties. Materials Chemistry and Physics, 2010,
    124, 78–82 (2010).
    117
    [171] C. Klinke, E. Delvigne, J. V. Barth and K. Kern. Enhanced Field Emission
    from Multiwall Carbon Nanotube Films by Secondary Growth. J. Phys. Chem. B,
    2005, 109, 21677-21680 (2005).
    [172] C. C. Hsieh, M. J. Youh, H. C. Wu, L. C. Hsu, J. C. Guo and Y. Y. Li.
    Synthesis of Carbon Nanotubes Using a Butane−Air Bunsen Burner and the
    Resulting Field Emission Characteristics. J. Phys. Chem. C, 112, 19224–19230
    (2008).
    [173] G. M. Yang, C. C. Yang, Q. Xu, W. T. Zheng and S. Li. Enhancement
    mechanism of field electron emission properties in hybrid carbon nanotubes with
    tree- and wing-like features. J. Solid State Chem., 182, 3393–3398 (2009).
    [174] C. E. Hunt, O. J. Glembocki, Y. Wang and S. M. Prokes. Carbon nanotube
    growth for field-emission cathodes from graphite paste using Ar-ion bombardment.
    Appl. Phys. Lett., 86, 163112 (2005).
    [175] W. C. Shih, J. M. Jeng, M. H. Tsai and J. T. Lo. Enhancement of field
    emission properties of graphite flakes by producing carbon nanotubes on above
    using thermal chemical vapor deposition. Applied Surface Science, 2010, 256,
    2409–2413 (2010).
    [176] D. H. Lee, J. A. Lee, W. J. Lee, and S. O. Kim. Flexible Field Emission of
    Nitrogen-Doped Carbon Nanotubes/Reduced Graphene Hybrid Films. Small, 7,
    95–100 (2011).
    [177] R. H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A, 1928, 119, 173
    (1928).
    [178] S. M. Lyth and S. R. P. Silva. Field emission from multiwall carbon
    nanotubes on paper substrates. App. Phys. Lett., 90, 173124 (2007).
    [179] W. A. Deheer, A. Chatelain, D. Ugarte. A Carbon Nanotube Field-Emission
    Electron Source. Science 1995, 270, 1179 (1995).
    [180] S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H.
    J. Dai. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field
    Emission Properties. Science 1999, 283, 512 (1999).
    [181] C. H. Weng, K. C. Leou, H.W.Wei, Z. Y. Juang, M. T. Wei, C. H. Tung, C.
    H. Tsai. Structural transformation and field emission enhancement of carbon
    118
    nanofibers by energetic argon plasma post-treatment. Appl. Phys. Lett. 85, 4732
    (2004).
    [182] G. Y. Zhang, X. Jiang, E. G. Wang. Self-assembly of carbon nanohelices:
    Characteristics and field electron emission properties. Appl. Phys. Lett. 84, 2646
    (2004).
    [183] C. L. Tsai, C. F. Chen, L. K. Wu. Bias effect on the growth of carbon
    nanotips using microwave plasma chemical vapor deposition. Appl. Phys. Lett. 81,
    721 (2002).
    [184] L. R. Baylor, V. I. Merkulov, E. D. Ellis, M. A. Guillorn, D. H. Lowndes, A.
    V. Melechko, M. L. Simpson, J. H. Whealton. Field emission from isolated
    individual vertically aligned carbon nanocones. J. Appl. Phys. 91, 4602 (2002).
    [185] Y. Sun, Q. Wu and G. Shi. Graphene based new energy materials. Energy
    Environ. Sci., 2011, 4, 1113.
    [186] D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H.
    Hong, W. J. Lee, R. S. Ruoff and S. O. Kim, Adv. Mater., 2010, 22, 1247–1252.
    [187] Duc Dung Nguyen, Nyan-Hwa Tai, Szu-Ying Chen and Yu-Lun Chueh.
    Controlled growth of carbon nanotube-graphene hybrid materials for flexible and
    transparent conductors and electron field emitters. Nanoscale, 4, 632 (2012).
    [188] N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik,
    E. V. Buzaneva, A. D. Gorchinskiy. Layer-by-Layer Assembly of Ultrathin
    Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations.
    Chem. Mater., 11, 771 (1999).
    [189] W. S. Hummers, R. E. Offeman. Preparation of graphitic oxide. J. Am.
    Chem. Soc., 80, 1339 (1958).
    [190] H. He, J. Klinowski, M. Forster and A. Lerf. A new structural model for
    graphite oxide. Chem. Phys. Lett., 287, 53–56 (1998).
    [191] H. C. Schniepp, et al. Functionalized single graphene sheets derived from
    splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006).
    [192] R. H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A, 1928, 119,
    173.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE