簡易檢索 / 詳目顯示

研究生: 張育蓉
Chang, Yu-Jung
論文名稱: 訊息蛋白SH2B1β誘導之STAT3轉錄活性和電刺激分別對促進神經軸突生長之調控機制
The enhancement of neurite outgrowth by SH2B1β-mediated transcriptional activity of STAT3 and by electrical stimulation
指導教授: 陳令儀
Chen, Linyi
口試委員: 彭筱明
顏伶汝
劉俊揚
王翊青
李佳霖
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 104
中文關鍵詞: 訊息蛋白SH2B1beta電刺激神經軸突生長
外文關鍵詞: SH2B1beta, electrical stimulation, neurite outgrowth
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在神經分化及神經再生中,神經軸突的生長是必要的過程。因此了解神經軸突
    生長的分子機制及細胞調控,有益於罹患神經性疾病和損傷之病人。訊息接合蛋
    白SH2B1β已知會促進神經分化、在細胞核及細胞質間穿梭來回移動、和調控一
    系列神經營養蛋白所誘導的基因表現。在此論文中,我提供證據顯示SH2B1β會
    與轉錄因子STAT3 鍵結,影響STAT3 在細胞中的分佈,增加STAT3 的絲胺酸
    磷酸化及轉錄活性,因而促進纖維細胞生長因子所誘導的STAT3 下游基因表
    現,如:Egr1 和Cdh2。這些研究結果都確立SH2B1β在神經分化過程中透過鍵結
    與調控STAT3 複合物,傳遞訊息到活化基因轉錄之重要角色。
    電刺激也已經被指出可促進神經分化及再生。在此論文第二部份,電刺激所調
    控的分子機制將被探討。我們的研究結果指出,同時給予PC12 細胞100 mV/mm
    的電刺激及神經生長因子能有最好的促進神經軸突生長的效果。電刺激透過修飾
    ERK1/2 活性而促進神經生長因子所誘導的神經軸突生長。這研究結果指出結合
    電刺激及神經生長因子提供一個很有前途的策略促進神經軸突生長。綜合以上結
    果,此篇論文研究提出訊息接合蛋白SH2B1β和電刺激正向調控PC12 細胞之神
    經分化。


    Neurite outgrowth is an essential process during neuronal differentiation as well as regeneration. Thus, understanding the molecular and cellular control of neurite outgrowth will benefit patients with neuronal diseases and injury. SH2B1β was known to enhance neuronal differentiation, undergo nucleocytoplasmic shuttling and regulate a subset of neurotrophin-induced genes. In this thesis, I provide evidence suggesting that SH2B1β interacts with the transcription factor, signal transducer and activator of transcription 3 (STAT3), by affecting the sub-cellular distribution of STAT3, and increasing serine phosphorylation and the transcriptional activity of STAT3, thus the expression of STAT3 target genes Egr1 and Cdh2 during neuronal differentiation. These findings establish a central role of SH2B1β in orchestrating signaling events to transcriptional activation through interacting and regulating STAT3-containing complexes during neuronal differentiation.
    Electrical stimulation (ES) has also been shown to enhance both neurite outgrowth and nerve regeneration. In the second part of this thesis, the molecular mechanism is investigated. Our data suggest that ES of 100 mV/mm together with nerve growth factor (NGF) provides optimal effect on promoting neurite outgrowth of PC12 cells. ES promotes NGF-induced neurite outgrowth through modulating the activity of extracellular signal-regulated kinase. These data suggest that combining ES and NGF provides a promising strategy for promoting neurite outgrowth. Taken together, this thesis shows the positive regulation of SH2B1β and ES on neurite outgrowth of PC12 cells.

    Acknowledgement 5 Publication List 7 Abstract 9 中文摘要 10 Introduction 11 Materials and Methods 22 Reagents. 22 Plasmids. 23 Cell culture. 24 Primary culture of cortical neurons. 24 Immunoblotting and immunoprecipitation. 25 Fractionation. 26 Duolink in situ proximity ligation assay (PLA). 26 Luciferase assay. 27 FGF1 treatment and neurite outgrowth. 28 Knockdown of STAT3. 29 Molecular docking. 29 ChIP assay. 30 Electrical stimulation and microscopy. 31 Immunofluorescence staining. 32 Statistical analysis. 32 Chapter 1: 34 SH2B1β interacts with STAT3 and enhances fibroblast growth factor 1-induced gene expression during neuronal differentiation 34 Interaction between SH2B1β and STAT3. 35 Interaction between SH2B1β and STAT3 depends on STAT3 phosphorylation. 36 Functional significance of the interaction between SH2B1β and STAT3. 40 Overexpression of SH2B1β enhances in vivo occupancy of STAT3-Sp1 heterodimers at the promoter regions of Cdh2 and Egr1. 45 Discussion 48 Figures 53 Chapter 2: 73 Electrical stimulation promotes nerve growth factor-induced neurite outgrowth and signaling 73 Electrical stimulation is not sufficient to induce neurite outgrowth. 74 Effect of electrical stimulation enhances NGF-induced neurite outgrowth. 75 Electrical stimulation enhances NGF-induced pERK1/2 level. 77 Discussion 79 Figures 81 Appendix 92 References 96

    1. Arimura, N., and Kaibuchi, K. (2007) Nat Rev Neurosci 8, 194-205
    2. Valtorta, F., and Leoni, C. (1999) Philos Trans R Soc Lond B Biol Sci 354, 387-394
    3. Hashimoto, M., Sagara, Y., Langford, D., Everall, I. P., Mallory, M., Everson, A., Digicaylioglu, M., and Masliah, E. (2002) J Biol Chem 277, 32985-32991
    4. McAllister, A. K. (2001) Cell Mol Life Sci 58, 1054-1060
    5. Allen, S. J., and Dawbarn, D. (2006) Clin Sci (Lond) 110, 175-191
    6. Iwata, T., and Hevner, R. F. (2009) Dev Growth Differ 51, 299-323
    7. Sofroniew, M. V., Howe, C. L., and Mobley, W. C. (2001) Annual review of neuroscience 24, 1217-1281
    8. Ginty, D. D., Bonni, A., and Greenberg, M. E. (1994) Cell 77, 713-725
    9. Hawley, R. J., Scheibe, R. J., and Wagner, J. A. (1992) J Neurosci 12, 2573-2581
    10. Gilley, J., Coffer, P. J., and Ham, J. (2003) J Cell Biol 162, 613-622
    11. Powers, C. J., McLeskey, S. W., and Wellstein, A. (2000) Endocr Relat Cancer 7, 165-197
    12. Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H., and Tomic-Canic, M. (2008) Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society 16, 585-601
    13. Baird, A. (1994) Current opinion in neurobiology 4, 78-86
    14. Eckenstein, F. P. (1994) J Neurobiol 25, 1467-1480
    15. Pappas, I. S., and Parnavelas, J. G. (1997) Exp Neurol 144, 302-314
    16. Johnson, D. E., Lu, J., Chen, H., Werner, S., and Williams, L. T. (1991) Mol Cell Biol 11, 4627-4634
    17. Peterson, D. A., Lucidi-Phillipi, C. A., Murphy, D. P., Ray, J., and Gage, F. H. (1996) J Neurosci 16, 886-898
    18. Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M. (1991) Cell 64, 841-848
    19. Schlessinger, J., Plotnikov, A. N., Ibrahimi, O. A., Eliseenkova, A. V., Yeh, B. K., Yayon, A., Linhardt, R. J., and Mohammadi, M. (2000) Mol Cell 6, 743-750
    20. Dailey, L., Ambrosetti, D., Mansukhani, A., and Basilico, C. (2005) Cytokine Growth Factor Rev 16, 233-247
    21. Lobb, R., Sasse, J., Sullivan, R., Shing, Y., D'Amore, P., Jacobs, J., and Klagsbrun, M. (1986) J Biol Chem 261, 1924-1928
    22. Jaye, M., Howk, R., Burgess, W., Ricca, G. A., Chiu, I. M., Ravera, M. W., O'Brien, S. J., Modi, W. S., Maciag, T., and Drohan, W. N. (1986) Science 233, 541-545
    23. Imamura, T., Engleka, K., Zhan, X., Tokita, Y., Forough, R., Roeder, D., Jackson, A., Maier, J. A., Hla, T., and Maciag, T. (1990) Science 249, 1567-1570
    24. Rydel, R. E., and Greene, L. A. (1987) J Neurosci 7, 3639-3653
    25. Lin, H. Y., Xu, J., Ornitz, D. M., Halegoua, S., and Hayman, M. J. (1996) J Neurosci 16, 4579-4587
    26. Negishi, M., and Katoh, H. (2002) J Biochem 132, 157-166
    27. Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T., and Kirschner, M. W. (1999) Cell 97, 221-231
    28. Rohatgi, R., Ho, H. Y., and Kirschner, M. W. (2000) J Cell Biol 150, 1299-1310
    29. Kubota, K., Inoue, K., Hashimoto, R., Kumamoto, N., Kosuga, A., Tatsumi, M., Kamijima, K., Kunugi, H., Iwata, N., Ozaki, N., Takeda, M., and Tohyama, M. (2009) J Neurochem 110, 496-508
    30. Miki, H., and Takenawa, T. (2002) Biochem Biophys Res Commun 293, 93-99
    31. Govek, E. E., Newey, S. E., and Van Aelst, L. (2005) Genes Dev 19, 1-49
    32. Sebok, A., Nusser, N., Debreceni, B., Guo, Z., Santos, M. F., Szeberenyi, J., and Tigyi, G. (1999) J Neurochem 73, 949-960
    33. Kiryushko, D., Berezin, V., and Bock, E. (2004) Ann N Y Acad Sci 1014, 140-154
    34. Choung, P. H., Seo, B. M., Chung, C. P., Yamada, K. M., and Jang, J. H. (2002) Biochem Biophys Res Commun 295, 898-902
    35. Walsh, F. S., and Doherty, P. (1997) Annu Rev Cell Dev Biol 13, 425-456
    36. Sanchez-Heras, E., Howell, F. V., Williams, G., and Doherty, P. (2006) J Biol Chem 281, 35208-35216
    37. Suyama, K., Shapiro, I., Guttman, M., and Hazan, R. B. (2002) Cancer Cell 2, 301-314
    38. Kolkova, K., Novitskaya, V., Pedersen, N., Berezin, V., and Bock, E. (2000) J Neurosci 20, 2238-2246
    39. Flynn, D. C. (2001) Oncogene 20, 6270-6272
    40. Gao, H., Sun, Y., Wu, Y., Luan, B., Wang, Y., Qu, B., and Pei, G. (2004) Mol Cell 14, 303-317
    41. Witherow, D. S., Garrison, T. R., Miller, W. E., and Lefkowitz, R. J. (2004) Proc Natl Acad Sci U S A 101, 8603-8607
    42. Kang, J., Shi, Y., Xiang, B., Qu, B., Su, W., Zhu, M., Zhang, M., Bao, G., Wang, F., Zhang, X., Yang, R., Fan, F., Chen, X., Pei, G., and Ma, L. (2005) Cell 123, 833-847
    43. Mitchell, P. J., Sara, E. A., and Crompton, M. R. (2000) Oncogene 19, 4273-4282
    44. Ikeda, O., Sekine, Y., Mizushima, A., Nakasuji, M., Miyasaka, Y., Yamamoto, C., Muromoto, R., Nanbo, A., Oritani, K., Yoshimura, A., and Matsuda, T. (2010) J Biol Chem 285, 38093-38103
    45. Minoguchi, M., Minoguchi, S., Aki, D., Joo, A., Yamamoto, T., Yumioka, T., Matsuda, T., and Yoshimura, A. (2003) J Biol Chem 278, 11182-11189
    46. Yousaf, N., Deng, Y., Kang, Y., and Riedel, H. (2001) J Biol Chem 276, 40940-40948
    47. Rui, L., Herrington, J., and Carter-Su, C. (1999) J Biol Chem 274, 10590-10594
    48. Qian, X., Riccio, A., Zhang, Y., and Ginty, D. D. (1998) Neuron 21, 1017-1029
    49. Qian, X., and Ginty, D. D. (2001) Mol Cell Biol 21, 1613-1620
    50. Zhang, Y., Zhu, W., Wang, Y. G., Liu, X. J., Jiao, L., Liu, X., Zhang, Z. H., Lu, C. L., and He, C. (2006) J Cell Sci 119, 1666-1676
    51. Kong, M., Wang, C. S., and Donoghue, D. J. (2002) J Biol Chem 277, 15962-15970
    52. Javadi, M., Hofstatter, E., Stickle, N., Beattie, B. K., Jaster, R., Carter-Su, C., and Barber, D. L. (2012) J Biol Chem 287, 26223-26234
    53. Lin, W. F., Chen, C. J., Chang, Y. J., Chen, S. L., Chiu, I. M., and Chen, L. (2009) Cell Signal 21, 1060-1072
    54. Ghosh, A., Ginty, D. D., Bading, H., and Greenberg, M. E. (1994) J Neurobiol 25, 294-303
    55. Donatello, S., Fiorino, A., Degl'Innocenti, D., Alberti, L., Miranda, C., Gorla, L., Bongarzone, I., Rizzetti, M. G., Pierotti, M. A., and Borrello, M. G. (2007) Oncogene 26, 6546-6559
    56. Lu, W. C., Chen, C. J., Hsu, H. C., Hsu, H. L., and Chen, L. (2010) Journal of molecular signaling 5, 17
    57. Wu, C. L., Chou, Y. H., Chang, Y. J., Teng, N. Y., Hsu, H. L., and Chen, L. (2012) PloS one 7, e34999
    58. Herrington, J., Diakonova, M., Rui, L., Gunter, D. R., and Carter-Su, C. (2000) J Biol Chem 275, 13126-13133
    59. Diakonova, M., Gunter, D. R., Herrington, J., and Carter-Su, C. (2002) J Biol Chem 277, 10669-10677
    60. Rider, L., Tao, J., Snyder, S., Brinley, B., Lu, J., and Diakonova, M. (2009) Mol Endocrinol 23, 1065-1076
    61. Rider, L., and Diakonova, M. (2011) Mol Endocrinol 25, 1231-1243
    62. Chen, L., and Carter-Su, C. (2004) Mol Cell Biol 24, 3633-3647
    63. Chen, L., Maures, T. J., Jin, H., Huo, J. S., Rabbani, S. A., Schwartz, J., and Carter-Su, C. (2008) Mol Endocrinol 22, 454-476
    64. Maures, T. J., Chen, L., and Carter-Su, C. (2009) Mol Endocrinol 23, 1077-1091
    65. Ihle, J. N., and Kerr, I. M. (1995) Trends Genet 11, 69-74
    66. Ihle, J. N., Witthuhn, B. A., Quelle, F. W., Yamamoto, K., Thierfelder, W. E., Kreider, B., and Silvennoinen, O. (1994) Trends Biochem Sci 19, 222-227
    67. Fu, W. Y., Fu, A. K., Lok, K. C., Ip, F. C., and Ip, N. Y. (2002) Neuroreport 13, 243-247
    68. Zhong, Z., Wen, Z., and Darnell, J. E., Jr. (1994) Science 264, 95-98
    69. Levy, D. E., and Darnell, J. E., Jr. (2002) Nature reviews. Molecular cell biology 3, 651-662
    70. Wen, Z., Zhong, Z., and Darnell, J. E., Jr. (1995) Cell 82, 241-250
    71. Zhang, X., Blenis, J., Li, H. C., Schindler, C., and Chen-Kiang, S. (1995) Science 267, 1990-1994
    72. Lim, C. P., and Cao, X. (1999) J Biol Chem 274, 31055-31061
    73. Courapied, S., Sellier, H., de Carne Trecesson, S., Vigneron, A., Bernard, A. C., Gamelin, E., Barre, B., and Coqueret, O. (2010) The Journal of biological chemistry 285, 26765-26778
    74. Ng, Y. P., Cheung, Z. H., and Ip, N. Y. (2006) J Biol Chem 281, 15636-15644
    75. Wang, R., Cherukuri, P., and Luo, J. (2005) J Biol Chem 280, 11528-11534
    76. O'Shea, J. J., Kanno, Y., Chen, X., and Levy, D. E. (2005) Science 307, 217-218
    77. Yuan, Z. L., Guan, Y. J., Chatterjee, D., and Chin, Y. E. (2005) Science 307, 269-273
    78. Ohbayashi, N., Ikeda, O., Taira, N., Yamamoto, Y., Muromoto, R., Sekine, Y., Sugiyama, K., Honjoh, T., and Matsuda, T. (2007) Biological & pharmaceutical bulletin 30, 1860-1864
    79. Snyder, M., Huang, X. Y., and Zhang, J. J. (2011) FEBS letters 585, 148-152
    80. Fujio, Y., Matsuda, T., Oshima, Y., Maeda, M., Mohri, T., Ito, T., Takatani, T., Hirata, M., Nakaoka, Y., Kimura, R., Kishimoto, T., and Azuma, J. (2004) FEBS letters 573, 202-206
    81. Colomiere, M., Findlay, J., Ackland, L., and Ahmed, N. (2009) The international journal of biochemistry & cell biology 41, 1034-1045
    82. Snyder, M., Huang, X. Y., and Zhang, J. J. (2008) J Biol Chem 283, 3791-3798
    83. Gao, X., Bian, W., Yang, J., Tang, K., Kitani, H., Atsumi, T., and Jing, N. (2001) Biochem Biophys Res Commun 284, 1098-1103
    84. Bixby, J. L., and Zhang, R. (1990) J Cell Biol 110, 1253-1260
    85. Makwana, M., and Raivich, G. (2005) The FEBS journal 272, 2628-2638
    86. Cui, Q. (2006) Molecular neurobiology 33, 155-179
    87. Anton, E. S., Weskamp, G., Reichardt, L. F., and Matthew, W. D. (1994) Proc Natl Acad Sci U S A 91, 2795-2799
    88. Madison, R. D., and Archibald, S. J. (1994) Exp Neurol 128, 266-275
    89. Ramer, M. S., Priestley, J. V., and McMahon, S. B. (2000) Nature 403, 312-316
    90. Shakhbazau, A., Martinez, J. A., Xu, Q. G., Kawasoe, J., van Minnen, J., and Midha, R. J Neurochem 122, 501-511
    91. Rangasamy, S. B., Soderstrom, K., Bakay, R. A., and Kordower, J. H. Prog Brain Res 184, 237-264
    92. Lim, S. T., Airavaara, M., and Harvey, B. K. Pharmacol Res 61, 14-26
    93. Yasuhara, T., Borlongan, C. V., and Date, I. (2006) Front Biosci 11, 760-775
    94. Apfel, S. C. (2001) Clin Chem Lab Med 39, 351-355
    95. Hefti, F., Armanini, M. P., Beck, K. D., Caras, I. W., Chen, K. S., Godowski, P. J., Goodman, L. J., Hammonds, R. G., Mark, M. R., Moran, P., Nishimura, M. C., Phillips, H. S., Shih, A., Valverde, J., and Winslow, J. W. (1996) Ciba Found Symp 196, 54-63; discussion 63-59
    96. Hefti, F. (1994) J Neurobiol 25, 1418-1435
    97. Kerns, J. M., Fakhouri, A. J., Weinrib, H. P., and Freeman, J. A. (1991) Neuroscience 40, 93-107
    98. Park, J. S., Park, K., Moon, H. T., Woo, D. G., Yang, H. N., and Park, K. H. (2009) Langmuir 25, 451-457
    99. McClellan, A. D., Kovalenko, M. O., Benes, J. A., and Schulz, D. J. (2008) J Neurosci 28, 650-659
    100. Wood, M., and Willits, R. K. (2006) Bioelectromagnetics 27, 328-331
    101. Udina, E., Furey, M., Busch, S., Silver, J., Gordon, T., and Fouad, K. (2008) Exp Neurol 210, 238-247
    102. Kimura, K., Yanagida, Y., Haruyama, T., Kobatake, E., and Aizawa, M. (1998) J Biotechnol 63, 55-65
    103. Somogyi, G. T., and de Groat, W. C. (1999) Life sciences 64, 411-418
    104. Brosenitsch, T. A., and Katz, D. M. (2001) J Neurosci 21, 2571-2579
    105. Wenjin, W., Wenchao, L., Hao, Z., Feng, L., Yan, W., Wodong, S., Xianqun, F., and Wenlong, D. Cellular and molecular neurobiology 31, 459-467
    106. Zhao, R., Liu, L., and Rittenhouse, A. R. (2007) The European journal of neuroscience 25, 1127-1135
    107. Yamada, M., Tanemura, K., Okada, S., Iwanami, A., Nakamura, M., Mizuno, H., Ozawa, M., Ohyama-Goto, R., Kitamura, N., Kawano, M., Tan-Takeuchi, K., Ohtsuka, C., Miyawaki, A., Takashima, A., Ogawa, M., Toyama, Y., Okano, H., and Kondo, T. (2007) Stem Cells 25, 562-570
    108. Manivannan, S., and Terakawa, S. (1994) J Neurosci 14, 5917-5928
    109. Andine, P., Jacobson, I., and Hagberg, H. (1988) J Cereb Blood Flow Metab 8, 799-807
    110. Eyzaguirre, C., and Koyano, H. (1965) J Physiol 178, 438-462
    111. Chiquet, M., and Nicholls, J. G. (1987) J Exp Biol 132, 191-206
    112. Greene, L. A., and Tischler, A. S. (1976) Proc Natl Acad Sci U S A 73, 2424-2428
    113. Wang, T. C., Chiu, H., Chang, Y. J., Hsu, T. Y., Chiu, I. M., and Chen, L. (2011) PloS one 6, e26433
    114. Bromberg, J. F., Wrzeszczynska, M. H., Devgan, G., Zhao, Y., Pestell, R. G., Albanese, C., and Darnell, J. E., Jr. (1999) Cell 98, 295-303
    115. Su, H. W., Yeh, H. H., Wang, S. W., Shen, M. R., Chen, T. L., Kiela, P. R., Ghishan, F. K., and Tang, M. J. (2007) J Biol Chem 282, 9883-9894
    116. Kaptein, A., Paillard, V., and Saunders, M. (1996) J Biol Chem 271, 5961-5964
    117. Turkson, J., Bowman, T., Garcia, R., Caldenhoven, E., De Groot, R. P., and Jove, R. (1998) Mol Cell Biol 18, 2545-2552
    118. Besser, D., Bromberg, J. F., Darnell, J. E., Jr., and Hanafusa, H. (1999) Mol Cell Biol 19, 1401-1409
    119. Wen, Z., and Darnell, J. E., Jr. (1997) Nucleic acids research 25, 2062-2067
    120. Hsiao, S. P., and Chen, S. L. (2010) Biochem J 428, 223-233
    121. Harada, A., Katoh, H., and Negishi, M. (2005) J Biol Chem 280, 18418-18424
    122. Wang, T. C., Li, Y. H., Chen, K. W., Chen, C. J., Wu, C. L., Teng, N. Y., and Chen, L. (2011) J Cell Physiol 226, 2063-2074
    123. Burgess, W. H., Shaheen, A. M., Ravera, M., Jaye, M., Donohue, P. J., and Winkles, J. A. (1990) The Journal of cell biology 111, 2129-2138
    124. Harper, J. W., and Lobb, R. R. (1988) Biochemistry 27, 671-678
    125. Becker, S., Corthals, G. L., Aebersold, R., Groner, B., and Muller, C. W. (1998) FEBS letters 441, 141-147
    126. Hu, J., and Hubbard, S. R. (2006) Journal of molecular biology 361, 69-79
    127. Comeau, S. R., Gatchell, D. W., Vajda, S., and Camacho, C. J. (2004) Bioinformatics 20, 45-50
    128. Comeau, S. R., Gatchell, D. W., Vajda, S., and Camacho, C. J. (2004) Nucleic acids research 32, W96-99
    129. Kozakov, D., Brenke, R., Comeau, S. R., and Vajda, S. (2006) Proteins 65, 392-406
    130. Kozakov, D., Hall, D. R., Beglov, D., Brenke, R., Comeau, S. R., Shen, Y., Li, K., Zheng, J., Vakili, P., Paschalidis, I., and Vajda, S. (2010) Proteins 78, 3124-3130
    131. Krissinel, E., and Henrick, K. (2007) Journal of molecular biology 372, 774-797
    132. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) Journal of computational chemistry 25, 1605-1612
    133. Schoppee Bortz, P. D., and Wamhoff, B. R. (2011) PloS one 6, e26015
    134. Vallania, F., Schiavone, D., Dewilde, S., Pupo, E., Garbay, S., Calogero, R., Pontoglio, M., Provero, P., and Poli, V. (2009) Proc Natl Acad Sci U S A 106, 5117-5122
    135. Schiavone, D., Avalle, L., Dewilde, S., and Poli, V. (2011) FEBS letters 585, 2455-2460
    136. Russell, D. L., Doyle, K. M., Gonzales-Robayna, I., Pipaon, C., and Richards, J. S. (2003) Mol Endocrinol 17, 520-533
    137. Clark, J., Edwards, S., Feber, A., Flohr, P., John, M., Giddings, I., Crossland, S., Stratton, M. R., Wooster, R., Campbell, C., and Cooper, C. S. (2003) Oncogene 22, 1247-1252
    138. Becker, S., Groner, B., and Muller, C. W. (1998) Nature 394, 145-151
    139. Schaefer, T. S., Sanders, L. K., and Nathans, D. (1995) Proc Natl Acad Sci U S A 92, 9097-9101
    140. Song, H., Wang, R., Wang, S., and Lin, J. (2005) Proc Natl Acad Sci U S A 102, 4700-4705
    141. Redies, C. (2000) Progress in neurobiology 61, 611-648
    142. Shoval, I., Ludwig, A., and Kalcheim, C. (2007) Development 134, 491-501
    143. Radice, G. L., Rayburn, H., Matsunami, H., Knudsen, K. A., Takeichi, M., and Hynes, R. O. (1997) Dev Biol 181, 64-78
    144. Le Mee, S., Fromigue, O., and Marie, P. J. (2005) Exp Cell Res 302, 129-142
    145. Li, B., Paradies, N. E., and Brackenbury, R. W. (1997) Gene 191, 7-13
    146. Loeffler, S., Fayard, B., Weis, J., and Weissenberger, J. (2005) Int J Cancer 115, 202-213
    147. Yang, X. P., Irani, K., Mattagajasingh, S., Dipaula, A., Khanday, F., Ozaki, M., Fox-Talbot, K., Baldwin, W. M., 3rd, and Becker, L. C. (2005) Arteriosclerosis, thrombosis, and vascular biology 25, 1395-1400
    148. Spiotto, M. T., and Chung, T. D. (2000) The Prostate 42, 88-98
    149. Akintola, A. D., Crislip, Z. L., Catania, J. M., Chen, G., Zimmer, W. E., Burghardt, R. C., and Parrish, A. R. (2008) American journal of physiology. Renal physiology 294, F170-176
    150. Dudka, A. A., Sweet, S. M., and Heath, J. K. (2010) Cancer research 70, 3391-3401
    151. Lin, S., Saxena, N. K., Ding, X., Stein, L. L., and Anania, F. A. (2006) Mol Endocrinol 20, 3376-3388
    152. Kiryu-Seo, S., Kato, R., Ogawa, T., Nakagomi, S., Nagata, K., and Kiyama, H. (2008) J Biol Chem 283, 6988-6996
    153. Lingor, P., Tonges, L., Pieper, N., Bermel, C., Barski, E., Planchamp, V., and Bahr, M. (2008) Brain 131, 250-263
    154. Koh, C. G. (2006) Neurosignals 15, 228-237
    155. Kimura, K., Yanagida, Y., Haruyama, T., Kobatake, E., and Aizawa, M. (1998) Med Biol Eng Comput 36, 493-498
    156. Dent, E. W., Kwiatkowski, A. V., Mebane, L. M., Philippar, U., Barzik, M., Rubinson, D. A., Gupton, S., Van Veen, J. E., Furman, C., Zhang, J., Alberts, A. S., Mori, S., and Gertler, F. B. (2007) Nat Cell Biol 9, 1347-1359
    157. Brown, M. D., Cornejo, B. J., Kuhn, T. B., and Bamburg, J. R. (2000) J Neurobiol 43, 352-364
    158. Rajnicek, A. M., Gow, N. A., and McCaig, C. D. (1992) Experimental physiology 77, 229-232
    159. Cork, R. J., McGinnis, M. E., Tsai, J., and Robinson, K. R. (1994) J Neurobiol 25, 1509-1516
    160. Pan, L., and Borgens, R. B. (2010) Exp Neurol 222, 161-164
    161. Hinkle, L., McCaig, C. D., and Robinson, K. R. (1981) J Physiol 314, 121-135
    162. Patel, N., and Poo, M. M. (1982) J Neurosci 2, 483-496
    163. Cormie, P., and Robinson, K. R. (2007) Neurosci Lett 411, 128-132

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE