研究生: |
莊茹茵 Ju-Yin Chuang |
---|---|
論文名稱: |
加速P2P系統之Broadcast效率 Improving Broadcast Processes in Peer-to-peer Systems |
指導教授: |
陳宜欣
Yi-Shin Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 46 |
中文關鍵詞: | 點對點網路 、搜尋 |
外文關鍵詞: | broadcast, peer-to-peer, logistic |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在點對點網路系統 (Peer-to-Peer systems, P2P) 中做資訊的流通散佈(Broadcast)是一件具有挑戰性的工作。由於P2P並不像傳統的主從式架構(client/server systems),由中央伺服器負責散發訊息,而是必須依賴互相連接的點之間密切溝通來達成,因此在過程當中經常出現大量的重複訊息在系統的點與點之間傳送,而造成了網路擁塞與額外負擔。這篇論文主要討論了在P2P系統的一般broadcast過程所隱含的理論基礎,進而利用所觀察到的數學模型來設計一個快速的broadcast架構。其中主要的概念是在系統尚未開始做溝通之前,根據模型給予每個點關於資訊傳遞過程的一些知識(preliminary knowledge),根據這個模型,每個點都能夠獨立決定如何將它收到的
訊息傳播出去,以幫助整個系統減少過多的重複。我們的實驗結果驗證了這樣的方式能夠使網路獲得最大效益,也就是使更多點快速的收到訊息,並且和所必須付出的代價之間取得平衡。
Broadcasting in peer-to-peer (P2P) systems is challenging because of the lack of central server and its dynamic characteristic. Peers usually waste too much unnecessary effort to forward duplicated messages. In this paper, we provide some theoretical basis for the broadcasting processes and utilize the theoretical model to design the broadcasting framework. The main idea of the framework is to provide some preliminary knowledge for each peer. Based on the preliminary knowledge, peers can give directions of broadcasting and eliminate the duplicated transmissions. Our experimental results show that in the dynamic systems of large scales, our method can achieve maximum performance
that reaches the balance between the delivered time and traffic overhead.
[1] Lada A. Adamic, Bernardo A. Huberman;, A. Barab´asi, R. Albert, H. Jeong, and G. Bianconi;. Power-law distribution of the world wide web. Science, 287(5461):2115, 2000.
[2] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-topeer content distribution technologies. ACM Computing Surveys, 36(4):335–371, 2004.
[3] Rowstron Antony and Druschel Peter. Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. Lecture Notes in Computer Science, 2218:329, 2001.
[4] N. Balakrishnan, editor. Handbook of the Logistic Distribution. Marcel Dekker, Inc., 1992.
[5] Albert-L´aszl´o Barab´asi and R´eka Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, 1999. 34
[6] Zhao Y. Ben, Kubiatowicz D. John, and Joseph D. Anthony. Tapestry: An infrastructure for fault-tolerant wide-area location and routing. Technical report, Computer Science Division,University of California, Berkeley, 2001.
[7] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for replicated database maintenance. In PODC ’87: Proceedings of the sixth annual ACM Symposium on Principles of distributed computing, 1987.
[8] Sameh El-Ansary, Luc Onana Alima, Per Brand, and Seif Haridi. Efficient broadcast in structured p2p networks. In IPTPS ’03: 2nd International Workshop on Peer-to-Peer Systems, 2003.
[9] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the internet topology. In SIGCOMM ’99: Proceedings of the conference on Applications, technologies, architectures, and protocols for computer communication, pages 251–262, 1999.
[10] Gnutella. http://rfc-gnutella.sourceforge.net.
[11] Zygmunt Haas, Joseph Y. Halpern, and Li Li. Gossip based ad hoc routing. Technical report, Cornell University, 2001.
[12] Zygmunt J. Haas, Joseph Y. Halpern, and Li Li. Gossip based ad hoc routing. IEEE/ACM Transactions on Networking (TON), 14(3):479–491, 2006. 35
[13] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barab´asi. The large-scale organization of metabolic networks. Nature, 407(6804):651–654, 2000.
[14] Song Jiang, Lei Guo, and Xiaodong Zhang. Lightflood: An efficient flooding scheme for file search in unstructured peer-to-peer systems. In Proceedings of 2003 International Conference on Parallel Processing (ICPP’03), 2003.
[15] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized rumor spreading. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pages 565–574, 2000.
[16] Kazza 2003. http://www.kazza.com.
[17] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins. Extracting large-scale knowledge bases from the web. In VLDB ’99: Proceedings of the 25th International Conference on Very Large Data Bases, pages 639–650, 1999.
[18] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins. Trawling the web for emerging cyber-communities. In Proceedings of the 8th World Wide Web Conference, 1999.
[19] Ji Li, Karen Sollins, and Dah-Yoh Lim. Implementing aggregation and broadcast over distributed hash tables. SIGCOMM Computer Communication Review, 35(1):81–92, 2005.
36
[20] Meng Lin, Keith Marzullo, and Stefano Masini. Gossip versus deterministic flooding: Low message overhead and high reliability for broadcasting on small networks. Technical report, University of California at San Diego, 1999.
[21] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek, Ambj¨orn Naeve, Mikael Nilsson, Matthias Palm´er, and Tore Risch. Edutella: A p2p networking infrastructure based on rdf. In Proceedings of the 12th International Conference on World Wide Web, 2003.
[22] Peersim project website. http://peersim.sourceforge.net.
[23] Marius Portmann and Aruna Seneviratne. The cost of application-level broadcast in a fully decentralized peer-to-peer network. In ISCC ’02: Proceedings of the Seventh International Symposium on Computers and Communications (ISCC’02), page 941, 2002.
[24] Matei Ripeanu. Peer-to-peer architecture case study: Gnutella network. In P2P’01: Proceedings of the First International Conference on Peer-to-Peer ComputingProceedings of the First International Conference on Peer-to-Peer Computing, 2001.
[25] R¨udiger Schollmeier. A definition of peer-to-peer networking for the classification of peer-to-peer architectures and applications. In P2P ’01: Proceedings of the First International Conference on Peer-to-Peer Computing, page 101, 2001. 37
[26] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications, 2001.
[27] Ratnasamy Sylvia, Francis Paul, Handley Mark, Karp Richard, and Schenker Scott. A scalable content-addressable network. In SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications, pages 161–172, 2001.
[28] Tatsuhiro Tsuchiya, Shinichi Ikeda, and Tohru Kikuno. Counter-based reliability optimization for gossip-based broadcasting. Computer Communications, 29(9):1516–1521, 2006.
[29] A. Wagner and D. A. Fell. The small world inside large metabolic networks. Proceedings of the Royal Society of London. Series B, Biological Sciences, 268(1478):1803–1810, 2001.
[30] Duncan J. Watts. Six Degrees: The Science of a Connected Age, chapter 4, pages 101–114. W. W. Norton & Company, Inc., 2004.
[31] Duncan J. Watts. Six Degrees: The Science of a Connected Age, chapter 6, pages
168–174. W. W. Norton & Company, Inc., 2004.