簡易檢索 / 詳目顯示

研究生: 金俊德
Jin, Jun-De
論文名稱: 應用於無線-有線通訊之微波CMOS積體放大器
Microwave CMOS Integrated Amplifiers for Wireless/Wireline Communications
指導教授: 徐碩鴻
Hsu, Shuo-Hung
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 66
中文關鍵詞: CMOS平衡式放大器π型並聯共振轉阻放大器π型電感式peaking
外文關鍵詞: CMOS, balanced amplifier, π–type parallel resonance, transimpedance amplifier, π-type inductor peaking
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對微波頻段的無線-有線通訊系統提出了二個創新的技巧用於增加CMOS積體電路放大器的效能。我們將這二個方法分別展示在一個窄頻放大器和一個寬頻放大器中,且這第二個放大器都使用了標準的0.18-μm RF CMOS製程。與使用相同或更先進製程的文獻相比,這二個放大器的效能皆優於或可與其相提並論。
    所設計的窄頻放大器為操作在24 GHz、增益為45 dB的平衡式放大器(Balanced amplifier, BA)。此放大器使用了本文所提出的窄頻電路技術:π型並聯共振器(π-type parallel resonance, PPR)。藉由共振掉電晶體天生的寄生電容,PPR可有效的增加電晶體的高頻增益。在耦合器的設計方面,我們使用了微小式的集總元件耦合器因為此面積只有傳統的傳輸線耦合器的2 %。所設計的BA特性為:操作電壓1 V、消耗功率123 mW、增益45 dB、晶片面積0.97 × 0.63 mm2、主要電路面積0.78 × 0.43 mm2。跟其它使用相同製程和操作頻率的窄頻放大器所比,此放大器的增益為最高。
    所設計的寬頻放大器為40-Gb/s的轉阻放大器(Transimpedance amplifier, TIA)。此放大器使用了本文所提出的寬頻電路技巧:π型電感式peaking (π-type inductor peaking, PIP)。對一個共源級放大器而言,PIP可增加頻寬達3.31倍。另外,PIP用於輸入級也可使得雜訊電流隨著頻率增加而減少。所設計的TIA特性為:操作電壓1.8 V、消耗功率60.1 mW、轉阻增益51 dBΩ、頻寬30.5 GHz、晶片面積1.17 × 0.46 mm2、增益頻寬積除以直流功率180.1 GHzΩ/mW。


    This study proposed new circuit design techniques to achieve high-performance CMOS integrated amplifiers for wireless/line communications at microwave frequencies. The design concepts were demonstrated by one narrowband and one broadband amplifiers, which were both realized in the standard 0.18-μm RF CMOS technology. The measured results presented superior performances compared with other published works using a similar or even more advanced CMOS technology.
    The designed narrowband amplifier is a 24-GHz balanced amplifier (BA) with a gain up to 45 dB. An effective technique, π–type parallel resonance (PPR), was proposed to boost the high frequency gain of a MOSFET by resonating out the inherent capacitances. The miniaturized lumped-element coupler in the circuit occupies a chip area of only ~ 2 % compared to that of the conventional transmission-line coupler. The BA consumes 123 mW from a supply voltage of 1 V. The proposed CMOS BA presents the highest gain of 45.0 dB with a chip area of 0.97 × 0.63 mm2 (core area: 0.78 × 0.43 mm2) among the published narrowband amplifiers with similar technologies and operation frequencies.
    The designed broadband amplifier is a 40-Gb/s transimpedance amplifier (TIA). From the measured S-parameters, a transimpedance gain of 51 dBΩ and a 3-dB bandwidth up to 30.5 GHz were observed. A gain-bandwidth product (GBW) enhancement technique, π-type inductor peaking (PIP), is proposed to achieve a bandwidth enhancement ratio (BWER) of 3.31. In addition, the PIP topology used at the input stage decreases the noise current as the operation frequency increases. Under a 1.8 V supply voltage, the TIA consumes 60.1 mW with a chip area of 1.17 × 0.46 mm2. The proposed CMOS TIA presents a GBW per DC power figure-of-merit (GBP/Pdc) of 180.1 GHzΩ/mW.

    Abstract ……………………………………………………………………………… 2 Acknowledgements .…………………………………………………………………. 4 Contents .……………………………………………………………………………... 5 List of Figures ……………………………………………………………………….. 7 List of Tables ………………………………………………………………………… 9 Chapter I: Introduction .............................................................................................. 10 1.1 Overview of Thesis …………………………………………………... 13 Chapter II: Performance Boosting Techniques for Narrowband Amplifiers.…… 14 2.1 π-type Parallel Resonance (PPR) …………………………………….. 14 2.2 Effectiveness of PPR...………………………………………………... 16 2.3 Noise Analysis………………………………………………………… 17 2.4 Summary.……………………………………………………………… 18 Chapter III: GBW Enhancement Techniques for Broadband Amplifiers ..……... 19 3.1 Shunt Peaking .………………………………………………………... 19 3.2 T-coil Peaking .………………………………………………………... 20 3.3 Shunt-Series Peaking .………………………………………………… 21 3.4 π-type Inductor Peaking (PIP) .……………………………………….. 21 3.4.1 Design Concept of PIP...……………………………………….. 21 3.4.2 Transfer Function of PIP...……………………………………... 23 3.4.3 Design Trade-Offs in PIP Configuration...……………………… 26 3.5 Summary……………………………………………………………… 28 Chapter IV: Design of a 24-GHz Balanced Amplifier .……………………………. 29 4.1 Circuit Topology .……………………………………………………... 29 4.2 Lumped-Element Coupler ……………………………………………. 32 4.3 Design of Interconnects ……………………………………………… 35 4.4 Stability Issues ……………………………………………………….. 36 4.5 Measured Frequency Responses.……………………………………... 38 4.6 Summary.……………………………………………………………… 42 Chapter V: Design of a 40-Gb/s Transimpedance Amplifier ..……………………. 43 5.1 Circuit Topology .……………………………………………………... 43 5.2 Noise Analysis .……………………………………………………….. 48 5.3 Measured Frequency Responses ……………………………………... 50 5.4 Measured Transient Responses.………………………………………. 55 5.5 Summary.……………………………………………………………… 56 Chapter VI: Conclusions ..………………………………………………………….. 57 6.1 Future Work ..………………………………………………………… 57 References …………………………………………………………………………… 58 Vita ………………………………………………………………………………..…. 63 Publication List ……………………………………………………………………... 65

    [1] W. R. Deal, M. Biedenbender, P. Liu, J. Uyeda, and M. Siddiqui et al., “Design and analysis of broadband dual-gate balanced low-noise amplifiers,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2107-2115, Oct. 2007.
    [2] M. A. Masud, H. Zirath, and M. Kelly, “A 45-dB variable-gain low-noise MMIC amplifier,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2848-2855, June 2006.
    [3] J. Wang, X. Zhu, and D. Pavlidis, “Low-power InP/GaAsSb/InP DHBT cascade transimpedance amplifier with GBP/Pdc of 7.2 GHz/mW,” Electron. Lett., vol. 42, no. 1, pp. 25-27, Jan. 2006.
    [4] E. Kerherve, C. P. Moreira, P. Jarry, and L. Courcelle, “40-Gb/s wide-band MMIC pHEMT modulator driver amplifiers designed with the real frequency technique,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 2145-2152, June 2005.
    [5] S. Masuda, T. Takahashi, and K. Joshin, “An over-110-GHz InP HEMT flip-chip distributed baseband amplifier with inverted microstrip line structure for optical transmission system,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1479-1484, Sept. 2003.
    [6] B. A. Floyd, “V-band and W-band SiGe bipolar low-noise amplifiers and voltage-controlled oscillators,” in IEEE RFIC Symp. Dig., June 2004, pp. 295-298.
    [7] N. Tanzi, J. Dykstra, and K. Hutchinson, “A 1-watt doubly balanced 5GHz flip-chip SiGe power amplifier,” in IEEE RFIC Symp. Dig., June 2003, pp. 141-144.
    [8] A. Schild, H.-M. Rein, J. Mullrich, L. Altenhain, and J. Blank et al., “High-gain SiGe transimpedance amplifier arry for a 12 × 10 Gb/s parallel optical-fiber link,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 4-12, Jan. 2003.
    [9] S. Mandegaran and A. Hajimiri, “A breakdown voltage multiplier for high voltage swing drivers,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 302-312, Feb. 2007.
    [10] Q. He and M. Feng, “Low-power, high-gain, and high-linearity SiGe BiCMOS wide-band low-noise amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 956-959, June 2004.
    [11] E. Morifuji, and H. S. Momose, T. Ohguro, T. Yoshitomi, and H. Kimijima et al., “Future perspective and scaling down roadmap for RF CMOS,” in IEEE VLSI Circuits Symp. Dig. Tech. Papers, June 1999, pp. 165-166.
    [12] W. Wu, S. Lam, and M. Chan, “Effects of layout methods of RF CMOS on noise performance,” IEEE Trans. Electron Devices, vol. 52, no. 12, pp. 2753-2759, Dec. 2005.
    [13] N. Zhang, C.-M. Hung, and K. K. O, “80-GHz tuned amplifier in bulk CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 121-123, Feb. 2008.
    [14] B. A. Floyd, L. Shi, Y. Taur, I. Lagnado, and K. K. O, “A 23.8-GHz SOI CMOS tuned amplifier,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 9, pp. 2193-2196, Sept. 2002.
    [15] Y.-C. Ho, K.-H. Kim, B. A. Floyd, C. Wann, and Y. Taur et al., “4- and 13-GHz tuned amplifiers implemented in a 0.1-μm CMOS technology on SOI, SOS, and bulk substrates,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2066-2073, Dec. 1998.
    [16] D. J. Cassan and J. R. Long, “A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LNA in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 427-435, Mar. 2003.
    [17] J.-D. Jin and S. S. H. Hsu, “A 0.18-μm CMOS balanced amplifier for 24-GHz applications,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 440-445, Feb. 2008.
    [18] J.-D. Jin and S. S. H. Hsu, “A 1-V, 45-GHz balanced amplifier with 21.5-dB gain using 0.18-μm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp. 599-603, Mar. 2008.
    [19] S. Galal and B. Razavi, “10-Gb/s limiting amplifier and laser/modulator driver in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2138-2146, Dec. 2003.
    [20] J. A. Mataya, G. W. Haines, and S. B. Marshall, “IF amplifier using Cc compensated transistors,” IEEE J. Solid-State Circuits, vol. SC-3, no. 4, pp. 401-407, Dec. 1968.
    [21] A. Arbabian and A. M. Niknejad, “A broadband distributed amplifier with internal feedback providing 660GHz GBW in 90nm CMOS,” in IEEE ISSCC Dig. Tech. Paper, Feb. 2008, pp. 196-197.
    [22] J.-C. Chien and L.-H. Lu, “40Gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18μm CMOS,” in IEEE ISSCC Dig. Tech. Paper, Feb. 2007, pp. 538-539.
    [23] R.-C. Liu, T.-P. Wang, L.-H. Lu, H. Wang, and S.-H. Wang et al., “An 80GHz traveling-wave amplifier in a 90nm CMOS technology,” in IEEE ISSCC Dig. Tech. Paper, Feb. 2005, pp. 154-155.
    [24] J. Kim, J.-O. Plouchart, N. Zamdmer, R. Trzcenski, and R. Groves et al., “A 12dBm 320GHz GBW distributed amplifier in a 0.12μm SOI CMOS,” in IEEE ISSCC Dig. Tech. Paper, Feb. 2004, pp. 478-479.
    [25] B. Kleveland, C. H. Diaz, D. Vook, L. Madden, and T. H. Lee et al., “Monolithic CMOS distributed amplifier and oscillator,” in IEEE ISSCC Dig. Tech. Paper, Feb. 1999, pp. 70-71.
    [26] S. S. Mohan, M. del M. Hershenson, S. P. Boyd, and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 346-355, Mar. 2000.
    [27] S. Galal and B. Razavi, “Broadband ESD protection circuits in CMOS technology,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2334-2340, Dec. 2003.
    [28] S. Galal and B. Razavi, “40-Gb/s amplifier and ESD protection circuit in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2389-2396, Dec. 2004.
    [29] J.-D. Jin and S. S. H. Hsu, "40-Gb/s transimpedance amplifier in 0.18-μm CMOS technology," in Proc. Eur. Solid-State Circuits Conf., Sept. 2006, pp. 520-523.
    [30] J.-D. Jin and S. S. H. Hsu, “A 40-Gb/s transimpedance amplifier in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1449-1457, June 2008.
    [31] S. Shekhar, J. S. Walling, and D. J. Allstot, “Bandwidth extension techniques for CMOS amplifiers,” IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2424-2439, Nov. 2006.
    [32] J.-D. Jin and S. S. H. Hsu, “A 70-GHz transformer-peaking broadband amplifier in 0.13-μm CMOS technology,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2008, pp. 285-288.
    [33] C.-F. Liao and S.-I. Liu, “40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 642-655, Mar. 2008.
    [34] J.-D. Jin and S. S. H. Hsu, “Wideband CMOS transimpedance amplifier design using transformer-peaking technique,” in Solid State Devices and Materials, Sept. 2007, pp. 492-493.
    [35] TSMC, TSMC 0.18μm mixed signal 1P6M salicide 1.8V/3.3V RF spice models, T-018-MM-SP-001, Sept. 2004.
    [36] S. F. Tin, A. A. Osman, K. Mayaram, and C. Hu, “A simple subcircuit extension of the BSIM3v3 model for CMOS RF design,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 612-624, Apr. 2000.
    [37] M. S. Gupta, “Power gain in feedback amplifiers, a classic revisited,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 5, pp. 864-879, May 1992.
    [38] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge, U.K.: Cambridge Univ. Press, 2004.
    [39] Sonnet. Sonnet Softw., North Syracuse, NY, 2003. [Online]. Available: http://www.sonnetusa.com
    [40] R. S. Engelbrecht and K. Kurokawa, “A wideband low noise L-band balanced transistor amplifier,” Proc. IEEE, vol. 53, no. 3, pp. 237-247, Mar. 1965.
    [41] K. Kurokawa, “Design theory of balanced transistor amplifiers,” Bell Syst. Tech. J., vol. 44, pp. 1675-1698, Oct. 1965.
    [42] I. Bahl, Lumped Elements for RF and Microwave Circuits. Norwood, MA: Artech House, 2003.
    [43] R. C. Frye, S. Kapur, and R. C. Melville, “A 2-GHz quadrature hybrid implemented in CMOS technology,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 550-555, Mar. 2003.
    [44] J.-D. Jin, S. S. H. Hsu, M.-T. Yang, and S. Liu, “Low-loss differential semicoaxial interconnects in CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4333-4340, Dec. 2006.
    [45] A. Komijani, A. Natarajan, and A. Hajimiri, “A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1901-1908, Sep. 2005.
    [46] G. Ghione and C. Naldi, “Parameters of coplanar waveguides with lower ground plane,” Electron. Lett., vol. 19, no. 18, pp. 734-735, Sep. 1983.
    [47] J.-D. Jin, S. S. H. Hsu, M.-T. Yang, and S. Liu, "Low-loss single and differential semi-coaxial interconnects in standard CMOS process," in IEEE MTT-S Int. Microwave Symp. Dig., June 2006, pp. 420-423.
    [48] M. T. Yang, P. P. C. Ho, T. J. Yeh, Y. J. Wang, and D. C. W. Kuo et al., “On the millimeter-wave characteristics and model of on-chip interconnect transmission lines up to 110 GHz,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2005, pp. 1819-1822.
    [49] G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1997.
    [50] Agilent. Using Advanced Design System to Design an MMIC Amplifier, Application Note Number 1462. [Online]. Available: http://literature.agilent.com/litweb/pdf/5988-9637EN.pdf
    [51] X. Guan and A. Hajimiri, “A 24-GHz CMOS front-end,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb. 2004.
    [52] L. M. Franca-Neto, B. A. Bloechel, and K. Soumyanath, “17 GHz and 24 GHz LNA designs based on extended-S-parameter with microstrip-on-die in 0.18 μm logic CMOS technology,” in Proc. Eur. Solid-State Circuits Conf., Sep. 2003, pp. 149-152.
    [53] K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M. F. Chang, “K-band low-noise amplifiers using 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106-108, Mar. 2004.
    [54] B. Razavi, Design of Integrated Circuits For Optical Communications. Singapore: McGraw-Hill, 2003.
    [55] http://www.u2t.de/
    [56] K. Han, J. Gil, S.-S. Song, J. Han, and H. Shin et al., “Complete high frequency thermal noise modeling of short-channel MOSFETs and design of 5.2-GHz low noise amplifier,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 726-735, Mar. 2005.
    [57] K. Han, H. Shin, and K. Lee, “Analytical drain thermal noise current model valid for deep submicron MOSFETs,” IEEE Trans. Electron Devices, vol. 51, no. 2, pp. 261-269, Feb. 2004.
    [58] C. Kromer, G. Sialm, T. Morf, M. L. Schmatz, and F. Ellinger et al., “A low-power 20-GHz 52-dBΩ transimpedance amplifier in 80-nm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 885-894, June 2004.
    [59] E. Sackinger, Broadband Circuits For Optical Fiber Communication. New York: Wiley, 2005.
    [60] C. Q. Wu, E. A. Sovero, and B. Massey, “40-GHz transimpedance amplifier with differential outputs using InP-InGaAs heterojunction bipolar transistors,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1518-1523, Sep. 2003.
    [61] J. S. Weiner, J. S. Lee, A. Leven, Y. Baeyens, and V. Houtsma et al., “An InGaAs-InP HBT differential transimpedance amplifier with 47-GHz bandwidth,” IEEE J. Solid-State Circuits, vol. 39, no. 10, pp. 1720-1723, Oct. 2004.
    [62] R.-C. Liu and H. Wang, “DC-to-15- and dc-to-30-GHz CMOS distributed transimpedance amplifiers,” in IEEE RFIC Symp. Dig. Papers, June 2004, pp. 535-538.
    [63] B. Analui and A. Hajimiri, “Bandwidth enhancement for transimpedance amplifiers,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1263-1270, Aug. 2004.
    [64] Z. Lu, K. S. Yeo, J. Ma, M. A. Do, W. M. Lim, and X. Chen, “Broadband design techniques for transimpedance amplifiers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 3, pp. 590-600, Mar. 2007.
    [65] C.-H. Wu, C.-H. Lee, W.-S. Chen, and S.-I. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 548-552, Feb. 2005.
    [66] J. S.Weiner, A. Leven, V. Houtsma, Y. Baeyens, and Y.-K. Chen et al., “SiGe differential transimpedance amplifier with 50-GHz bandwidth,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1512-1517, Sep. 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE