研究生: |
李蔣哲卿 Li, Chaing Che-Ching |
---|---|
論文名稱: |
鍍著於鎳基超合金Haynes 282之熱處理氮化鋯薄膜抗蝕性提升研究 A Study on the Enhancement of Corrosion Resistance of Vacuum Annealed ZrN Thin Films on Ni-based Superalloy Haynes 282 |
指導教授: |
藍貫哲
Lan, Kuan-Che 黃嘉宏 Huang, Jia-Hong |
口試委員: |
朱鵬維
Chu, Peng-Wei 林景崎 Lin, Jing-Chie |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 77 |
中文關鍵詞: | 氮化鋯 、真空熱處理 、防蝕性 、鎳機超合金 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在於探討利用物理氣相沉積方法鍍著氮化鋯薄膜於鎳基超合金Haynes 282上經真空熱處理後的防蝕性質增強討論。首先利用非平衡磁控濺鍍系統將氮化鋯薄膜鍍著於Haynes 282與矽基材上,之後將試片在高真空(4×10-6 Torr)及攝氏950度的環境下,進行2到4小時的真空熱熱處理。熱處理後的試片在掃描式電子顯微鏡的觀察下可發現薄膜表面的粗糙度上升。由X光繞射結果顯示,即使經過4小時的真空熱處理,在兩種基材上之薄膜仍以氮化鋯為主要相。氧原子分布經歐傑電子能譜分析在薄膜外側表面以及薄膜與金屬之介面都可以被觀察到,推測分別形成內外氧化層。
在0.5M之硫酸電解液中,動態極化掃描的結果顯示未鍍膜之Haynes 282展現了均勻腐蝕且未形成穩定之鈍化層,而經氮化鋯覆膜之Haynes 282展現極佳的抗蝕性,試片腐蝕電流密度下降為原先之萬分之一。在重量百分比3.5%之鹽水電解液中,經動態極化掃描的結果顯示Haynes 282本身比起304不鏽鋼擁有更好的抗蝕性,而在氮化鋯薄膜披覆後,腐蝕電流密度可下降至原先的十分之一,且經真空熱處理後,覆膜試片在兩種電解液中之腐蝕電流密度皆可進一步下降。經過500小時的鹽霧測試後,所有鍍膜以及未鍍膜之Haynes 282試片之腐蝕面積均在1%以下,僅對照用的其餘金屬有顯著﹙大於1%﹚的腐蝕面積。利用AXS方法分析之殘餘應力,鍍著於Haynes 282上氮化鋯之壓應力在真空熱處理後增加。
本研究結果顯示利用非平衡磁控濺鍍系統鍍著之氮化鋯薄膜,鍍膜後以及經真空熱處理後均未脫落,可以提升Haynes 282在硫酸以及鹽水中之抗腐蝕性,並且可藉由真空熱處理可以進一步提升。
The purpose of this study was to enhance the corrosion resistance of the vacuum annealed ZrN thin film on the nickel-based superalloy by the physical vapor deposition. First, an unbalanced magnetron sputtering system was used to deposit the ZrN film on Haynes 282 and the silicon substrate, and then the specimen was annealed in vacuum (4×10-6 Torr) at 950˚C for 4 hours. After the heat treatment, the surface roughness of the vacuum annealed ZrN was increased observed by scanning electron microscope. The diffraction pattern of X-ray shows that after vacuum heat treatment for 4 hours, the ZrN phase is still dominant. The distribution of oxygen atoms can be observed on the surface of the thin film and interface between the thin film and the substrate by Auger electron spectroscopy analysis, which implies the existence of inner and outer oxide layers.
The results of the potentiodynamic polarization scan showed that the uncoated Haynes 282 exhibited uniform corrosion without forming a stable passivation layer, while the Haynes 282 coated with zirconium nitride showed excellent corrosion resistance in a 0.5M sulfuric acid electrolyte. The corrosion current density of the specimen decreases 4 orders of magnitude. In a 3.5 wt% saltwater electrolyte, the results of dynamic polarization scanning show that Haynes 282 has good corrosion resistance, and the corrosion current density decrease after ZrN deposition. After vacuum heat treatment, the corrosion current density of the coated specimens in the two electrolytes can be further decreased. After 500 hours of salt spray test, the corrosion area of both coated and uncoated specimens was below 1%. By using the average X-ray strain method, the vacuum annealed ZrN displays the compressive stress, which is presumably contributed by the thermal stress due to the difference in the coefficient of thermal expansion between the film and the metallic substrate.
The results of this research show that the ZrN thin film deposited by the unbalanced magnetron sputtering system does not fall off after vacuum heat treatment, which can improve the corrosion resistance of Haynes 282 in sulfuric acid and saltwater.
[1] D.L.Klarstrom, L.M.Pike, V.R.Ishwar, Nickel-base alloy solutions for ultrasupercritical steam power plants, in: Procedia Eng., 2013. https://doi.org/10.1016/j.proeng.2013.03.246.
[2] L.M.Pike, HAYNES® 282TM alloy - A new wrought superalloy designed for improved creep strength and fabricability, in: Proc. ASME Turbo Expo, 2006. https://doi.org/10.1115/GT2006-91204.
[3] T.M.Pollock, S.Tin, Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties, J. Propuls. Power. (2006). https://doi.org/10.2514/1.18239.
[4] H.S.Klapper, N.S.Zadorozne, R.B.Rebak, Localized corrosion characteristics of nickel alloys: A review, Acta Metall. Sin. (English Lett. (2017). https://doi.org/10.1007/s40195-017-0553-z.
[5] R.B.Rebak, Pitting characteristics of nickel alloys -A review, in: NACE - Int. Corros. Conf. Ser., 2016.
[6] P.J.Kelly, R.D.Arnell, Magnetron sputtering: A review of recent developments and applications, Vacuum. (2000). https://doi.org/10.1016/S0042-207X(99)00189-X.
[7] U.K.Wiiala, I.M.Penttinen, A.S.Korhonen, J.Aromaa, E.Ristolainen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surf. Coatings Technol. (1990). https://doi.org/10.1016/0257-8972(90)90167-B.
[8] L.vanLeaven, M.N.Alias, R.Brown, Corrosion behavior of ion plated and implated films, Surf. Coatings Technol. (1992). https://doi.org/10.1016/0257-8972(92)90100-O.
[9] D.Jianxin, L.Jianhua, Z.Jinlong, S.Wenlong, N.Ming, Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes, Wear. (2008). https://doi.org/10.1016/j.wear.2007.03.014.
[10] L.Hultman, Thermal stability of nitride thin films, Vacuum. (2000). https://doi.org/10.1016/s0042-207x(00)00143-3.
[11] H.Holleck, Material selection for hard coatings, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. (1986). https://doi.org/10.1116/1.573700.
[12] B.Navinšek, P.Panjan, I.Milošev, Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures, Surf. Coatings Technol. (1997). https://doi.org/10.1016/S0257-8972(97)00393-9.
[13] W.D.Sproul, Very high rate reactive sputtering of TiN, ZrN and HfN, Thin Solid Films. (1983). https://doi.org/10.1016/0040-6090(83)90016-0.
[14] I.I.Timofeeva, L.K.Shvedova, Microhardness and thermal expansion of transition metal nitrides within the 80-3000K temperature range, Izv. Akad. Nauk SSSR, Neorg. Mater. 8 (1972) 1169–1170. https://inis.iaea.org/search/search.aspx?orig_q=RN:4042452 (accessed August14, 2021).
[15] W.C.R.J.E. Hove, Modern Ceramic: Some Principles and Concepts, John Wiley, 1965.
[16] L.E. Toth, Transition Metal Carbides and Multilayers, Academic press, 1971.
[17] J.H.Huang, K.W.Lau, G.P.Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coatings Technol. (2005). https://doi.org/10.1016/j.surfcoat.2004.07.066.
[18] A.J.Perry, A contribution to the study of poisson’s ratios and elasticconstants of TiN, ZrN and HfN, Thin Solid Films. (1990). https://doi.org/10.1016/S0040-6090(05)80056-2.
[19] P.Jin, S.Maruno, Evaluation of internal stress in reactively sputter-deposited zrn thin films, Jpn. J. Appl. Phys. (1991). https://doi.org/10.1143/JJAP.30.1463.
[20] E.Budke, J.Krempel-Hesse, H.Maidhof, H.Schüssler, Decorative hard coatings with improved corrosion resistance, Surf. Coatings Technol. (1999). https://doi.org/10.1016/S0257-8972(98)00791-9.
[21] J.H.Huang, Z.E.Tsai, G.P.Yu, Mechanical properties and corrosion resistance of nanocrystalline ZrNxOy coatings on AISI 304 stainless steel by ion plating, Surf. Coatings Technol. (2008). https://doi.org/10.1016/j.surfcoat.2008.05.001.
[22] F.L.Perdomo, P.DeLima-Neto, M.A.Aegerter, L.A.Avaca, Sol-gel deposition of ZrO2 films in air and in oxygen-free atmospheres for chemical protection of 304 stainless steel: A comparative corrosion study, J. Sol-Gel Sci. Technol. (1999). https://doi.org/10.1023/A:1008769231899.
[23] S.Venkataraj, O.Kappertz, C.Liesch, R.Detemple, R.Jayavel, M.Wuttig, Thermal stability of sputtered zirconium oxide films, Vacuum. (2004). https://doi.org/10.1016/j.vacuum.2003.12.127.
[24] F.Cernuschi, S.Ahmaniemi, P.Vuoristo, T.Mäntylä, Modelling of thermal conductivity of porous materials: Application to thick thermal barrier coatings, J. Eur. Ceram. Soc. (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.09.012.
[25] H.Li, K.Liang, L.Mei, S.Gu, S.Wang, Oxidation protection of mild steel by zirconia sol-gel coatings, Mater. Lett. (2001). https://doi.org/10.1016/S0167-577X(01)00311-1.
[26] A.H.H. (Eds. .A.H. Heuer, M. Ruhle, in: N. Claussen, M. Ruhle, Advances in ceramics, Science and Technology of Zirconia II, vol. 12, (1984).
[27] J.P.Abriata, J.Garcés, R.Versaci, The O-Zr (Oxygen-Zirconium) system, Bull. Alloy Phase Diagrams. (1986). https://doi.org/10.1007/BF02881546.
[28] K.Fu, Z.Wang, D.Zhang, J.Zhang, Q.Zhang, A modal theory and recursion RTCM algorithm for gratings of deep grooves and arbitrary profile, Sci. China, Ser. A Math. Physics, Astron. (1999). https://doi.org/10.1007/bf02880082.
[29] E.L.Sham, M.A.G.Aranda, E.M.Farfan-Torres, J.C.Gottifredi, M.Martínez-Lara, S.Bruque, Zirconium Titanate from Sol-Gel Synthesis: Thermal Decomposition and Quantitative Phase Analysis, J. Solid State Chem. (1998). https://doi.org/10.1006/jssc.1998.7833.
[30] G.B.W.A. Roth, Thermochemical revisions, Z. Physik. Chem., A, 1929.
[31] O. Ruff, F. Ebert, Refractory Ceramics: 1, The Forms of Zirconia Dioxide, Z. Anorg. Allgem. Chem., 1929.
[32] L. Passerini, Isomorphism among oxides of different tetravalent metals: CeO2 – ZrO2; CeO2 – HfO2., (1930).
[33] K.Maca, H.Hadraba, J.Cihlar, Electrophoretic deposition of alumina and zirconia: I. Single-component systems, Ceram. Int. (2004). https://doi.org/10.1016/j.ceramint.2003.09.021.
[34] B.Hatton, P.S.Nicholson, Design and Fracture of Layered Al2O3/TZ3Y Composites Produced by Electrophoretic Deposition, J. Am. Ceram. Soc. (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00700.x.
[35] J.F.Shackelford, Y.-H.Han, S.Kim, S.-H.Kwon, CRC Materials Science and Engineering Handbook, 2016. https://doi.org/10.1201/b18971.
[36] F.C. Nonamaker, Technology of Zirconium and Its Compounds, (1924) 151–155.
[37] X.J.Chen, K.A.Khor, S.H.Chan, L.G.Yu, Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte, Mater. Sci. Eng. A. (2002). https://doi.org/10.1016/S0921-5093(01)01935-9.
[38] H.N.Al-Shareef, X.Chen, D.J.Lichtenwalner, A.I.Kingon, Analysis of the oxidation kinetics and barrier layer properties of ZrN and Pt/Ru thin films for DRAM applications, Thin Solid Films. (1996). https://doi.org/10.1016/0040-6090(95)08194-1.
[39] J.H.Huang, K.L.Kuo, G.P.Yu, Oxidation behavior and corrosion resistance of vacuum annealed ZrN-coated stainless steel, Surf. Coatings Technol. (2019). https://doi.org/10.1016/j.surfcoat.2018.11.054.
[40] W.L.Pan, G.P.Yu, J.H.Huang, Mechanical properties of ion-plated TiN films on AISI D2 steel, Surf. Coatings Technol. (1998). https://doi.org/10.1016/S0257-8972(98)00680-X.
[41] B.F.Chen, W.L.Pan, G.P.Yu, J.Hwang, J.H.Huang, On the corrosion behavior of TiN-coated AISI D2 steel, Surf. Coatings Technol. (1999). https://doi.org/10.1016/S0257-8972(98)00710-5.
[42] H.Uchida, S.Inoue, K.Koterazawa, Electrochemical evaluation of pinhole defects in TiN films prepared by r.f. reactive sputtering, Mater. Sci. Eng. A. (1997). https://doi.org/10.1016/s0921-5093(97)00233-5.
[43] W.J.Chou, G.P.Yu, J.H.Huang, Bias effect of ion-plated zirconium nitride film on Si(100), Thin Solid Films. (2002). https://doi.org/10.1016/S0040-6090(01)01762-X.
[44] E.Ariza, L.A.Rocha, F.Vaz, L.Cunha, S.C.Ferreira, P.Carvalho, L.Rebouta, E.Alves, P.Goudeau, J.P.Rivière, Corrosion resistance of ZrNxOy thin films obtained by rf reactive magnetron sputtering, Thin Solid Films. (2004). https://doi.org/10.1016/j.tsf.2004.08.091.
[45] P.Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Nachrichten von Der Gesellschaft Der Wissenschaften Zu Göttingen, Math. Klasse. (1918).
[46] J.Goldstein, D..Newbury, D..Joy, C..Lyman, P.Echlm, E.Lifshin, L.Sawyer, J..Micheal, Scanning Electron Microscopy and X-ray Microanalysis - Third Edition, Springer. (2003).
[47] W.C.Oliver, G.M.Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. (1992). https://doi.org/10.1557/jmr.1992.1564.
[48] C.H.Ma, J.H.Huang, H.Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films. (2002). https://doi.org/10.1016/S0040-6090(02)00680-6.
[49] A.N.Wang, J.H.Huang, H.W.Hsiao, G.P.Yu, H.Chen, Residual stress measurement on TiN thin films by combing nanoindentation and average X-ray strain (AXS) method, Surf. Coatings Technol. (2015). https://doi.org/10.1016/j.surfcoat.2015.08.059.
[50] J.R.Davis, Metals Handbook, Met. Handb. (1998).
[51] W.Plieth, Electrochemistry for Materials Science, 2008. https://doi.org/10.1016/B978-0-444-52792-9.X5001-5.
[52] American Society for Testing Material, ASTM-B117-16: Standard Practice for Operating Salt Spray ( Fog ) Apparatus, ASTM Int. (2017).
[53] ASTM, ASTM G85-11: Standard Practice for Modified Salt Spray (Fog) Testing, ASTM Stand. (2011).
[54] R.K.Singh, D.R.Gilbert, J.Fitz-Gerald, S.Harkness, D.G.Lee, Engineered interfaces for adherent diamond coatings on large thermal-expansion coefficient mismatched substrates, Science (80-. ). (1996). https://doi.org/10.1126/science.272.5260.396.
[55] H.Oettel, R.Wiedemann, S.Preißler, Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surf. Coatings Technol. (1995). https://doi.org/10.1016/0257-8972(95)08235-2.
[56] K.L.Kruger, HAYNES 282 alloy, in: Mater. Ultra-Supercritical Adv. Ultra-Supercritical Power Plants, 2017. https://doi.org/10.1016/B978-0-08-100552-1.00015-4.
[57] Y.Okada, Y.Tokumaru, Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K, J. Appl. Phys. (1984). https://doi.org/10.1063/1.333965.
[58] S.Surviliene, A.Lisowska-Oleksiak, A.Češuniene, Effect of ZrO2 on corrosion behaviour of chromium coatings, Corros. Sci. (2008). https://doi.org/10.1016/j.corsci.2007.08.008.
[59] R.W.Hertzberg, Deformation and Fracture Mechanics of Engineering, 1996.
[60] W.J.Chou, G.P.Yu, J.H.Huang, Deposition of TiN thin films on Si(100) by HCD ion plating, Surf. Coatings Technol. (2001). https://doi.org/10.1016/S0257-8972(01)01120-3.