研究生: |
游庭榮 |
---|---|
論文名稱: |
聚二甲基矽氧烷(PDMS)微懸臂樑的製作與熱噪聲之量測 Thermomechanical noise measurement of polydimethylsiloxane microcantilevers fabricated by multilayer soft lithography |
指導教授: | 楊雅棠 |
口試委員: |
莊嘉揚
李昇憲 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 懸臂樑 、多層次軟性微影 、熱噪聲 、楊氏係數 、共振頻 、彈性常數 |
外文關鍵詞: | cantilever, multilayer soft-lithography, thermomechanical noise, Young’s modulus, resonance frequency, spring constant |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聚二甲基矽氧烷(PDMS)微懸臂樑結構在生物細胞、活細胞、與軟性材料的奈米機械量測領域可是非常有用的,因此為了快速得知聚二甲基矽氧烷材料的機械特性,我們提供了利用多層次軟性微影的方法製作聚二甲基矽氧烷微懸臂樑,並且量測其熱噪聲,再由熱噪聲的量測可得知聚二甲基矽氧烷材料依造不同比例混的楊氏係數,我們量測聚二甲基矽氧烷微懸臂樑共振頻與品質因子的範圍分別在405 Hz到1.63 kHz與5~10,且經過我們的計算,我們聚二甲基矽氧烷微懸臂樑的彈性常數~10-4 N/m,比一般商品化原子力顯微鏡微懸臂樑小100倍甚至更小,且最小力量解析度大約在皮牛頓的範圍,因此我們未來可以利用它來量測生物力學,甚至可做到單分子細胞生物力學的量測。
Polydimethylsiloxane micro structures such as cantilevers have been shown useful for nanomechanical measurement of biomolecules, living cells, and soft matter. As a fundamental characterization, we report the thermomechanical noise measurement of flextual modes of polydimethylsiloxane cantilevers, fabricated multilayer soft-lithography. From the resonance frequency data, we extract the values of Young’s moduli for different cross linking ratios. Our devices have measured resonance frequencies and quality factor ranging from 405 Hz to 1.63 kHz and from 5 to 10. The spring constants is ~10-4 N/m, 100 times smaller than commercially available atomic force microscope cantilever and the force resolution is in the pico newton range. Our experimental data and analysis show that such cantilevers will be capable of performing the nanomechanical measurement at single molecular level.
[1] M. Cha et al.,“Biomolecular detection with a thin membrane transducer,”Lab on a chip,8, 932-937, (2008).
[2] S. Sang and H. Witte,“A novel PDMS micro membrane biosensor based on the analysis of surface stress,” Biosensors and bioelectronics,25, 2420-2424, (2010).
[3] J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju,and C. S. Chen,“Cells lying on a bed of microneedles: An approach to isolate mechanical force,” Proc. Natl. Acad. Sci. U.S.A.,100, 1484 (2003).
[4] Y. Zhao and X. Zhang,“Adaptation of flexible polymer fabrication to cellular mechanics study,”Appl. Physics Lett.,87, 144101, (2005).
[5] J. Park et al.,“Real-Time Measurement of the Contractile Forces of Self-Organized Cardiomyocytes on Hybrid Biopolymer Microcantilevers,”Anal. Chem. ,77, 6571, (2005).
[6] D. N. Hohne, J. G. Younger, and M. J. Solomon,“Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms,”Langmuir,25, 7743, (2009).
[7] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake,“Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,”Science,288, 113, (2000).
[8] D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whiteside,“Rapid Prototyping of Microfluidic Systems in poly(dimethylsiloxane),”Anal. Chem. ,70, 4974, (1998).
[9] T. Thorsen, S. J. Maerkl and S. R. Quake,“Microfluidic Large-Scale
Integration,”Science,298, 580, (2002).
[10] S. A. Vanapalli, M. H. G. Dutis, and F. Mugele,“Microfluidics as a functional tool for cell mechanics,” Biomicrofluidics,3, 012006, (2009).
[11] X. Q. Brown, K. Ookawa, and J. Y. Wong,“Evaluation of polydimethylsiloxane scaffolds with physiologicallyrelevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response,” Biomaterials,26, 3123, (2005).
[12] J. C. Lotter, W. Olthius, P. H. Veltink, and P. Bergreld,“The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech.Microeng.,7, 145, (1997).
[13] F. Scneider, T. Fellner, J. Wilde, and U. Wallrabe,“Mechanical properties of silicones for MEMS,” J. Micromech. Microeng.,18, 065008, (2008).
[14] Y. Xiang and D. A. Lavan,“Analysis of soft cantilevers as force transducers,”Appl. Phys. Lett.,90, 133901, (2007).
[15] I. K. Lin, Y. M. Liao, Y. Liu, K. S. Ou, K. S. Chen, and X. Zhang,“Viscoelastic mechanical behavior of soft microcantilever-based force sensors,” Appl. Phys. Lett.,93, 251907, (2008).
[16] E. P. Kartalov, C. Walker, C. R. Taylor, and W. F. Andersen, and A. Scherer, “Microfluidic vias enable nested bioarrays and autoregulatory devices in Newtonian fluids,” PNAS,103, 12280, (2006).
[17] A. Alessandrini and P. Facci,“AFM: a versatile tool in biophysics,”Meas. Sci Technol.,16, R65, (2005).
[18] J. W. H. Chon, P. Mulvaney, and J. S. Sader,“Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids,” J. Appl. Phys.,87, 3878, (2000).
[19] K. E. Petersen and C. R. Guarnieri,“Young's modulus measurements of thin films using micromechanics,” J. Appl. Phys.,50, 6762, (1979).
[20] L. D. Landau and E. M. Lifshitz,“Theory of elasticity,”3rd ed.,(Pergamon,New York,1986) p.102.
[21] M. S. Kim, J. H. Choi, J. H. Kim, Y. K. Park,“Accurate determination of spring constant of atomic force microscope cantilevers and comparison with other methods,”Measurement,43, 520, (2010).
[22] P. Hinterdorfer and Y. F. Dufrene,“Detection and localization of single molecular recognition events using atomic force microscopy,”Nature Methods,3, 347, (2006).