研究生: |
游舜名 |
---|---|
論文名稱: |
自組裝單分子膜輔助SU8-2035負型光阻與玻璃基材間黏著力提升的設計與測試 Adhesion Improvement between SU8-2035 Resist and Glass Substrate by Self-Assembly Monolayers (SAMs) |
指導教授: |
曾繁根
Fan-Gang Tseng 錢景常 Ching-Chang Chieng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 黏著力 、自組裝單分子膜 、表面刮痕測試 |
外文關鍵詞: | SU8, Adhesion, Self-Assembly Monolayers, Scratch Tests |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究宗旨在於發展利用自組裝單分子膜來增進SU-82035負型光阻與玻璃基材之間的黏著力,以期能達成能抵抗物理性或化學性的破壞,擴大SU-8 2035在微機電系統中應用的空間,提升微機電系統元件製程良率的目標。高分子材料與基材表面的黏著力向來是應用上的一大問題,因此如何有效的改善,並穩定的控制表面特性來達到控制黏著力的目的,便成了很重要的課題。自組裝單分子的特色是,製程簡單、製程後表面特性穩定、時效長、不易被破壞等優點,近年來已被廣泛的研究。
本研究提出,成功的利用自組裝單分子膜來增進SU-8 2035與玻璃基材之間的黏著力,並且比較利用表面粗糙度、電漿處理、化學蝕刻等方式來提升SU-8 2035與玻璃基材間的黏著力,發現自組裝單分子膜所得到的黏著力提升的效果要大於其他方式所得,並且再透過對自組裝單分子膜進行退火處理,使其重新排列整理後,效果更益明顯,提高黏著力達4倍有餘,由此可知自組裝單分子膜的優劣影響黏著力甚巨,因此要更提升黏著力,則必須再對自組裝單分子做更詳細的研究,此外如何提高SU-8 2035與基材之間鍵結反應的效率,亦是相當重要的關鍵之一。本研究量測基於表面微刮痕測試(micro-scratch tests),能於定性上提供黏著力優劣的比較,再結合原子力顯微鏡和表面動態分析儀,對自組裝單分子膜進行特性研究,並實際運用自組裝單分子膜於SU-8製作微小結構之測試與觀察。
參考資料:
1. H. Weiss, “Adhesion of advanced overlay coatings: mechanisms and quantitative assessment”, Surf. and Coatings Tech., Vol. 71, pp. 201-207, 1995.
2. M. C. van der Leeden, G. Frens, “Surface Properties of Plastic Materials in Relation to Their Adhering Performance”, Adv. Eng. Mater., Vol. 4, pp. 280-289, 2002.
3. H. Lorenz, M Despont, N Fahrni, N LaBianca, P Renaud, P Vettiger, “SU8: a low-cost negative resist for MEMS’, J. Micromech. Microeng, Vol. 7, pp. 121-124, 1997.
4. R. L. Barber, M. K. Ghantasala, R. Divan, D. C. Mancini, E. C. Harvey, Proceeding of SPIE,5276, 85-91, 2004.
5. M. A. Uddin, H. P. Chan, C. K. Chow, “Thermal and Chemical Stability of a Spin-Coated Epoxy Adhesive for the Fabrication of a Polymer Optical Waveguide”, Chem. Mater., Vol. 16, pp. 4806-4811, 2004.
6. S. Ranganathan, I. Steidel, F. Anariba, R. L. McCreery, “Covalently Bonded Organic Mono-layers on a Carbon Substrate: A New Paradigm for Molecular Electronics”, Nanoletters, Vol.1, pp. 491-494, 2001.
7. L/H. Sharpe, H. Schonhorn, Chem. Eng. News, Vol. 15, pp.67, 1963.
8. J. W. Mac Bain, D. G. Hopkins, J. Phys. Chem., Vol.29, pp.88, 1925.
9. R. M. Vasenin in: Adheison, Fundamentals and Practice, Mac Laren, London, pp.29, 1969.
10. P. G. de Gennes, J. Chem. Phys., Vol.55, pp.572, 1971.
11. T. Young, Phil. Trans. Roy. Soc., Vol.95, pp.65, 1805.
12. A. Durpré in: Theorie Méchanique de la Chaleur (Gauthier-Villars, Paris), 1869.
13. F. M. Fowkes, Ind. Eng. Chem., Vol. 56, pp.44, 1964.
14. H. C. Hamaker, Rec. Trav. Chim., Vol. 56, pp.3, 1937.
15. D. K. Owens, R. C. Wendt, J. Appl. Polymer Sci., Vol. 13, pp. 1741, 1969.
16. S. Wu, Polymer Interface and Adhesion, 1982.
17. G. Frens and A. Van der Put, J. Adheison. Sci. Technol., Vol. 12, pp. 1355, 1998.
18. D. E. Packham in: Adhesion Aspects of Polymeric Coatings (ed. K. L. Mittal), Plenum Press, New York, pp. 19, 1983.
19. E. Ranucci, A. Sandgren, N. Andronova, A. Albertsson, “Improved polyimide/Metal Adhesion by Chemical Modification Approaches”, J. Applied Polymer Sci., Vol. 82, pp. 1971-1985, 2001.
20. J. DiGiacomo, Proc. Of Society of Plastic Engineer Regional Technical Conference on Decorating and Joining of Plastics, PP. 35, Sep. 1995.
21. J. S. Cho, S. Han, K. H. Kim, Y. W. Beag, S. K. Koh, “Surface modification of Polymers by ion-assist reaction”, Thin Solid Film, Vol. 445, pp. 332-341, 2003.
22. W. Petasch, E. Rauchle, M. Walker, P. Elsner “Improvement of the adhesion of low-energy polymers by a short-time plasma treatment”, Surface and Coatings Tech., Vol. 74-75, pp. 682-688, 1995.
23. W. T. Li, R. B. Charters, B. Luther-Davies, L. Mar, “Significant improvement of adhesion between gold thin films to a polymer”, Applied Surface Sci., Vol. 233, pp. 227-233, 2004.
24. L. F. MacManus, et al., J. Polymer Sci.: Polymer Chem., Vol. 37, pp. 2489, 1999.
25. A. Miszczyk, H. Szalinska, “Laboratory evaluation of epoxy coatings with an adhesion promoter by impedance”, Progress in Oragnic Coatings, Vol. 25, pp. 357-363, 1995.
26. Ru Feng, Richard J. Farris, “Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings”, J. Micromech. Microeng., Vol. 13, pp.80-88, 2003.
27. 孫嘉星,陳美滿,”自動組裝烷基二硫代羧酸薄膜結構與性質研究”, 東吳大學化學研究所碩士論文,台灣,2002.
28. A. Ulman, “An Introduction to Ultrathin Organic Film”, Academic Press, San Diego, 1991
29. D. L. Allara. “Critical issues in applications of self-assembled monolayers”, Biosensors & Bioelectronics, Vol. 10, pp. 771-783, 1995.
30. A. Ulman, “Formation and Structure of Self-assembled Monolayers”. Chem. Rev., Vol. 96, pp. 1533-1554, 1996.
31. J. Sagiv, “Organized monolayers by adsorption.1.formation and structure of oleophobic mixed monolayers on solid surfaces”, J. Am. Chem. Soc., Vol. 102, pp. 92-98, 1980.
32. P. Silberzan, L. Leger, D. Ausserre, J. J. Bemattar, “Silanation of silica surfaces. A new method of constructing pure or mixed monolayers”, Langmuir, Vol. 7, pp. 1647-1651, 1991.
33. S. R. Wasserman, Y. T. Tao, J. M. Whiteside, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon subtrates”, Langmuir, Vol. 5, pp. 1074-1087, 1989.
34. R. R. Rye, G. C. Nelson, M. T. Dugger, ”Mechanistic aspects of alkylchlorosilane coupling reaction”, Langmuir, Vol. 13, pp. 2965-2972, 1999.
35. T. Vallant et al., “Formation of self-assembled octadecylsiloxane monolayer on mica and silicon surfaces studied by atomic force microscopy and infrared spectroscopy”, J.Phys. Chem. B, Vol. 102, pp. 7190-7197, 1998.
36. K. Bierbaum, M. Grunze, A. A. Baski, L. F. Chi, W. Schrepp, H. Fuchs, “Growth of self-assembled n-alkyltrichlorosilane films on Si(100) investigated by atomic force microspcopy”, Langmuir, Vol. 11, pp. 2143-2150, 1995.
37. S. R. Resch, et al., “In situ and ex situ AFM investigation of the formation of octadecylsiloxane monolayer”, Appl. Surface Sci., pp. 168-175, 1999.
38. J. B. Brzoska, N. Shahidzadeh, F. Rondelez, “Evidence of a transition temperature for the optimum deposition of drafted monolayer coatings”, Nature, Vol. 360, pp. 719-713, 1992.
39. 蔡怡杏,’’自聚性分子膜成膜動力學之臨界溫度研究’’ , 國立台灣大學化學工程研究所碩士論文, 台北, 台灣, 1999
40. J. T. Woodward, A. Ulman, D. K. Schwartz, “Self-assembled monolayer growth of octadecyltrichlorosilane”, Langmuir, Vol.10, pp. 3607-3614, 1994.
41. M. T. McDermott, J. D. Green, M. D. Porter, “Scanning Froce Microscopic Exploration of the Lubrication Capabilities of n- Alkanethiolate Monolayers Chemisorbed at Gold: Structural Basis of Microscopic Friction and Wear”, Langmuir, Vol. 13, pp. 2504-2510, 1997.
42. A. Lio, D. H. Charych, M. Salmeron, “Comparative Atomic Force Microscopy Study of the Chain Length Dependence of Frictional Properties of Alkanethiol on Gold and Alkylsilanes on Mica”, J. Phys. Chem. B, Vol. 101, pp. 3800-3805, 1997.
43. D. Rats, V. Hajek, L. Martinu, “Micro-scratch analysis and mechanical properties of plasma-deposited silicon-based coatings on polymer substrates”, Thin solid Films, Vol. 340, pp. 33-39, 1999.
44. R. Song, M. Y. M. Chiang, A. J. Crosby, A. Karim, E. J. Amis, N. Eidelman, “Combinatorial peel tests for the characterization of adhesion behavior of polymeric films”, Polymer, Vol. 46, pp. 1643-1652, 2005.
45. B. J. Briscoe, P. D. Evans, E. Pelillo, S. K. Sinha, “Scratch maps for polymers”, Wear, Vol. 200, pp. 137-147, 1996.
46. P. J, Burnett, D. S. Rickerby, Thin Solids films, Vol. 154, pp. 403, 1987.
47. D. S. Shin, K. N. Lee, K. H. Jang, J. K. Kim, W. J. Chung, Y. K. Kim, Y. S. Lee, “Protein patterning by maskless photolithography on hydrophilic polymer-grafted surface”, Biosensors & Bioelectronics, Vol. 19, pp. 485-494, 2003.
48. Manfred Radmacher, “Mapping local interaction force with AFM”, practice course on AFM in biology, 2001.
49. M. H. Chen, T. W. Shieh, F. G. Tseng, S. M. Yu, “Performance comparison between SU-8 3050N-02 and SU-8 2035 resist for micro-fabrication”, HARMST, PL17, pp. 118-119, 2005.
50. H. R. Brown, “Polymer Adhesion”, Materials Forum Vol. 24, pp. 49-58, 2000.