簡易檢索 / 詳目顯示

研究生: 邱敬淳
Chiu, JinChun
論文名稱: 微粒狀序化鐵鉑合金參硼以及參硼和碳之薄膜應用於能量輔助磁記錄
Granular L10 FePt:B and FePt:B,C for Energy Assisting Magnetic Recording
指導教授: 賴志煌
Lai, ChihHuang
口試委員: 唐敏注
蔡佳霖
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 110
中文關鍵詞: 粒狀序化鐵鉑合金磁紀錄
外文關鍵詞: Granular L10 FePt, Magnetic Recording
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 序化鐵鉑合金具有極高的磁異向性 (Ku~107erg/cc),在輔以能量寫入的方式下,被認為有機會打破磁記錄中的三元拮抗現象,進而大幅提高記錄密度。作為紀錄層的序化鐵鉑合金不但必需具有高序化度和單一鐵鉑(001)織構,近年來,為了達到更小的粒狀尺寸以及降低粒狀鐵鉑合金之間的磁交互作用力,多種分離體一一被嘗試添加在鐵鉑合金之中。在目前已知分離體中,硼具有低溫的高擴散性以及相近於序化鐵鉑的表面能,因此被推論能具有較小的序化鐵鉑尺寸以及柱狀結構。
    首先,我們製備了序化粒狀鐵鉑合金參雜硼的磁性薄膜,並發現絕大多數的硼會佔據粒狀鐵鉑的晶界,切割鐵鉑合金使其尺寸大幅的下降,卻有部分的硼會佔據鐵鉑合金的間隙位置,阻礙鐵的擴散,甚至形成微量的鐵硼相,進而造成序化反應的能障提高。由於碳,在目前已知的分離體中,具有對於鐵鉑合金序化度的傷害較小,且不易和硼反應的特性,我們接著製備了序化粒狀鐵鉑合金同時參雜硼和碳的磁性薄膜。藉由改變製成方式來降低硼佔據鐵鉑間隙位置的機率,並同時利用碳作為分離體的特性,成功製備出高序化度、垂直矯頑場2.5 T、單一鐵鉑(001)織構以及粒狀尺寸6~8 nm的磁性薄膜。


    Media trilemma has been the barrier for increasing the recording density of HDD for years. To break through the media trilemma in HDD, the ideal of granular L10 FePt for energy assisting magnetic recording was proposed and several requirements for granular L10 FePt must be achieved such as large perpendicular coercivity (>1.8T), small granular size, FePt (001) prefer orientation, narrow grain size distribution, narrow switch field distribution and columnar growth.
    Among all segregants, the grain size of FePt:B presented the smallest grain size and the surface energy of boron (~2.3kJ/m2) is the closet to it of FePt (~2.5kJ/m2) which means the potential to promote columnar growth.
    We first fabricated granular FePt:B and studied the effect of adding boron into FePt. It was found that boron would significantly hinder FePt order-disorder transition and thus contributed a rather low perpendicular coercivity. To solve this problem, the post-annealing processes were carried out to promote FePt order-disorder transition and the behavior of boron during FePt order-disorder transition was studied. However it turned out to be a dilemma between granular structure and magneto-crystalline anisotropy.
    According to recent work, carbon was considered to be the one that would not hinder the FePt order-disorder transition heavily nor degrade the crystalline of FePt (001) and (002). Therefore, the coercivity of granular L10 FePt:C was higher than it in other segregants.
    The ideal of multi-segregant of granular FePt:B,C was then proposed to take the advantages of both boron and carbon. We first fabricated granular L10 FePt:C as an ordered seed layer and then capping boron onto FePt:C. By post annealing, we successfully demonstrated multi-segregant of granular FePt:B,C.

    Chapter 1. INTRODUCTION 14 1. Motivation 14 2. Dissertation Outline 17 Chapter 2. BACKGRAOUND 18 1. Development of Hard Disk Drive 18 2. Media Trilemma 21 2.1. Thermal Stability 22 2.2 Writability 23 2.3 Signal-to-Noise Ratio 25 3. Material for Recording Layer: Iron Platinum 27 3.1 Ways to Promote Order-disorder Transition in γ2-FePt 30 3.2 Surface Energy of L10 FePt 31 4. Granular L10 FePt for Energy Assisted Magnetic Record 33 4.1 Granular L10 FePt:C 35 4.2 Granular L10 FePt:B 38 Chapter 3. TECHNIQUE 41 1. Fabrication 41 2. Measurement of Composition 43 1. X-ray photo-electron spectroscopy (XPS) 43 2. Inductively coupled plasma mass spectrometry (ICP-MS) 45 3 Measurement of structure 46 2. Atomic force microscope ( AFM ) 49 4 Magnetic Properties Measurement 53 1. Vibrating Sample Magnetometer 53 2. Hysteresis loop 54 3. Remanence Curve and Delta-M Measurement [68] 55 Chapter 4. Boron behavior in Granular L10 FePt:B 58 1. INTRODUCTION 58 2. EXPERIMENT PROCEDURES 60 2.1 Process flow 60 2.2 Experiment Details 61 3. RESULT AND DISCUSSION 63 3.1 Effect of Adding Boron in FePt 63 3.2 Effect of Post Annealing on granular FePt:B(X%) 69 3.3 Effect of Post-annealing temperature on granular FePt:B 75 4. CONCLUSION 81 Chapter 5: Multi-segregant of Granular L10 FePt:B,C 82 1 INTRODUCTION 82 2 EXPERIMENT PROCEDURE 83 2.1 Procedure Flow 83 2.2 Details 84 3 RESULT AND DISCUSSION 85 3-2. Effect of the carbon content on granular FePt:C 86 3-3. Effect of Boron Capping on granular FePt:C without annealing 89 3-4. Mechanisms During Post-Annealing 91 3-5. Effect of post annealing temperature on granular FePt:B,C 93 3-6. Effect of boron capping on FePt:B,C 97 3-7. Effect of carbon content on granular FePt:B,C 99 Chapter 6. SUMMARY 101

    1. IEEE TRANSACTIONS ON MAGNETICS, VOL. 35, NO. 6, NOVEMBER 1999 4423, Thermal Effect Limits in Ultrahigh-Density Magnetic Recording, Dieter Weller and Andreas Moser
    2. Rent, Thomas M. (2010-03-20). "Origin of Solid State Drives".
    3. Weber, Helmut (1967-09). "Microprogramming the IBM System/36O Model 30"
    4. Kerekes, Zsolt. "Charting the 30 Year Rise of the Solid State Disk Market"
    5. IHS iSuppli Market Research ‘’Solid-State Drive Market Revenue Set to more than Double This Year on Renewed Ultrabook Hopes’’ (2013-01-23)
    6. IEEE Transaction on Magnetic, Vol.48, 2012-05
    7. Journal of Magnetism and Magnetic Materials 321 (2009) 485– 494, S.N. Piramanayagam , K. Srinivasan
    8. Y. Chen, X. Dang, et ai, IEEE Trans. Magn. 39, no. 5, 2368-70, Sept. 2003
    9. S. Iwasaki and Y. Nakamura. An analysis for the magnetization mode for high density magnetic recording. IEEE Transactions on Magnetics, 13(5):1272–1277, 1977.–1277, SEP 1977.
    10. S.IwasakiandK.Takemura.Ananalysisforthecircularmodeofmagnetizationinshort wavelength recording. IEEE Transactions on Magnetics, 11(5):1173–1175, SEP 1975.
    11. S. Iwasaki, Y. Nakamura, and K. Ouchi. Perpendicular magnetic recording with a composite anisotropy film. IEEE Transactions on Magnetics, 15(6):1456–1458, NOV 1979.
    12. D.Litvinov,M.H.Kryder,andS.Khizroev.Recordingphysicsofperpendicularmedia: hard layers. Journal of Magnetism and Magnetic Materials, 241(2-3):453–465, MAR 2002
    13. H. N. Bertram and M. Williams, IEEE Trans. Magn. 36, no. I, p. 4-9, Jan 2000
    14. K. Z. Gao and H. N. Bertram, IEEE Trans. Magn. 39, no. 2, 704 - 709, March 2003
    15. K. Z. Gao, O. Heinonen and Y. Chen, JMMM 321, Is 6, p.49S-S07, March 2009.
    16. K. Z. Gao and H. N. Bertram, IEEE Trans. Magn., 38 Is. 6, p3675 - 3683, Dec. 2002.
    17. R. H. Victora and X. Shen, IEEE Trans. Magn. 41, Is. 2, pS37-42, Feb. 200S.
    18. D. Suess, et ai, Appl. Phys. Lett., 87, Is 1, 012504, July 200S
    19. SLi,KGao,LWang,WZhu,XWang-USPatent 7,846,S64
    20. S.N. Piramanayagam , K. Srinivasan, Journal of Magnetism and Magnetic Materials 321 (2009) 485– 494
    21. Moser, K. Takano, D.T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, E.E. Fullerton, J. Phys. D: Appl. Phys. 35 (2002) R157.
    22. D. Weller, M.F. Doerner, Annu. Rev. Mater. Sci. 30 (2000) 611.
    23. L. Ne ́el, “The ́orie du trainage magne ́tique,” Ann. Geophys., vol. 5, p. 99, 1949.
    24. W. F. Brown, Jr., “Thermal fluctuations of a single-domain particle,” Phys. Rev., vol. 130, p. 1677, 1963.
    25. Stoner, E. C.; Wohlfarth, E. P. , Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, Volume 240, Issue 826, pp. 599-642, 1948
    26. Dieter Weller and Andreas Moser IEEE TRANSACTIONS ON MAGNETICS, VOL. 35, NO. 6, NOVEMBER 1999
    27. H.J. Richter and S.D. Harkness IV, MRS BULLETIN • VOLUME 31 • MAY 2006
    28. Maat, S. et al. Antiferromagnetic structure of FePt3 films studied by neu- tron scattering. Phys. Rev. B 63, 134426 (2001).
    29. Thaddeus B. Massalski et al., Binary alloy phase diagrams, Materials Park, Ohio/ASM International, 1990
    30. T.Klemmer, Y.Peng, X.Wu, and G.Ju. Materials Processing for HighAnisotropy L10 Granular Media. IEEE Transactions on Magnetics, 45(2):845–849, FEB 2009.
    31. D.Weller, A.Moser, L.Folks, M.E.Best, WenLee, M.F.Toney, M.Schwickert ,J. -U. Thiele, and M. F. Doerner. High Ku materials approach to 100 Gbits/in2. IEEE Transactions on Magnetics, 36(1):10–15, JAN 2000.
    32. Chun Feng, Bao-He Li, Gang Han, Jiao Teng, Yong Jiang et al. Appl. Phys. Lett. 88, 232109 (2006)
    33. Yu-Nu Hsu, Sangki Jeong, David E. Laughlin, and David N. Lambeth, J. Appl. Phys. 89, 7068 (2001)
    34. Tomoyuki Maeda, Tadashi Kai, Akira Kikitsu, Toshihiko Nagase, and Jun-ichi Akiyama, Appl. Phys. Lett. 80, 2147 (2002)
    35. CHIN. PHYS. LETT. Vol.28,No.6(2011)
    36. C. W. Chang, H. W. Chang, C. H. Chiu, and W. C. Chang, JOURNAL OF APPLIED PHYSICS 97, 10N117 (2005)
    37. B. C. Lim, J. S. Chen, J. F. Hu, Y. K. Lim, B. Liu, APPLIED PHYSICS 103, 07E143, (2008)
    38. Chih-Huang Lai, Cheng-Han Yang, and C. C. Chiang, Appl. Phys. Lett. 83, 4550 (2003)
    39. H. Zeng*, Shouheng Sun, R.L. Sandstrom, C.B. Murray, Journal of Magnetism and Magnetic Materials 266 (2003) 227–232
    40. Y. Shao, M. L. Yan, and D. J. Sellmyer, J. Appl. Phys. 93, 8152 (2003)
    41. Soichiro Saita and Shinya Maenosono, J. Phys.: Condens. Matter 16 (2004) 6385–6394
    42. Chun Feng, Xujing Li, Meiyin Yang, Kui Gong, Yuanmin Zhu et al. Appl. Phys. Lett. 102, 022411 (2013)
    43. Suklyun Hong, M. H. Yoo, JOURNAL OF APPLIED PHYSICS 97, 084315 (2005)
    44. Antje Dannenberg, Markus E. Gruner, Alfred Hucht, and Peter Entel, PHYSICAL REVIEW B 80, 245438 (2009)
    45. Jae-Song Kim, Yang-Mo Koo, and Namsoo Shin, OURNAL OF APPLIED PHYSICS 100, 093909 (2006)
    46. Mark H. Kryder, Edward C. Gage, Terry W. McDaniel, William A. Challener, Robert E. Rottmayer, Ganping Ju, Yiao-Tee Hsia, and M. Fatih Erden of the IEEE | Vol. 96, No. 11, November 2008
    47. Robert E. Rottmayer, Sharat Batra, Dorothea Buechel...etc, IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 10, OCTOBER 2006
    48. Jian-Gang Zhu, Xiaochun Zhu, Yuhui Tang, IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 1, JANUARY 2008
    49. Steven D. Granz and Mark H. Kryder, IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 11, NOVEMBER 2012
    50. S. Granz, Ph.D. thesis, Carnegie Mellon University, Pittsburgh, 2012
    51. C. P. Luo and D. J. Sellmyer: Appl. Phys. Lett. 75 (1999) 3162.
    52. E. Yang, and D. E. Laughlin: J. Appl. Phys. 104 (2008) 023904.
    53. Y. C. Wu, L. W. Wang, and C. H. Lai: Appl. Phys. Lett. 93 (2008) 242501.
    54. M. Watanabe, T. Masumoto, D. H. Ping, and K. Hono: Appl. Phys. Lett. 76 (2000) 3971.
    55. C. P. Luo, S. H. Liou, L. Gao, Y. Liu, and D. J. Sellmyer: Appl. Phys. Lett. 77 (2000) 2225.
    56. C. P. Luo and D. J. Sellmyer: Appl. Phys. Lett. 75 (1999) 3162.
    57. B. C. Lim, J. S. Chen, J. F. Hu, P. W. Lwin, Y. F. Ding, JOURNAL OF APPLIED PHYSICS 105, 07A730 (2009)
    58. Y. Peng, J. G. Zhu, and D. E. Laughlin: J. Appl. Phys. 99 (2006) 08F907.
    59. C. M. Kuo and P. C. Kuo: J. Appl. Phys. 87 (2000) 419.
    60. S. C. Chen, P. C. Kuo, C. T. Lie and J. T. Hua: J. Magn. Magn. Mater. 236 (2001) 151.
    61. M. Daniil, P. A. Farber, H. Okumura, G. C. Hadjipanayis and D. Weller: J. Magn. Magn. Mater. 246 (2002) 297.
    62. R. Sakurai, Y. Yamamoto, C. C. Chen, M. Hashimoto, J. Shi, Y. Nakamura and O. Nittono: Thin Solid Films 459 (2004) 208.
    63. H. S. Ko, A. Perumal, and S. C. Shin: Appl. Phys. Lett. 82 (2003) 2311.
    64. J. S. Chen, B. C. Lim, J. F. Hu, B. Liu, G. M. Chow, and G. Ju: Appl. Phys. Lett. 91 (2007) 132506.
    65. Perumal, Y. K. Takahashi, and K. Hono: Appl. Phys. Express 1 (2008) 101301.
    66. S. D. Granz, K. Barmak, and M. H. Kryder: J. Appl. Phys. 111 (2012) 07B709.
    67. J. L. Tsai, J. C. Huang, and H. W. Tai, JOURNAL OF APPLIED PHYSICS 111, 07A709 (2012)
    68. Steven D. Granza, Katayun Barmak, and Mark H. Kryder, Eur. Phys. J. B (2013)
    69. M. L. Yan, X. Z. Li, L. Gao, S. H. Liou, D. J. Sellmyer, R. J. M. van de Veerdonk, and K. W. Wierman, Appl. Phys. Lett. 83 (2003) 3332.
    70. T. Suzuki, Z. Zhang, A. K. Singh, J. Yin, A. Perumal, and H. Osawa, IEEE Trans. Magn. 41 (2005) 555.
    71. J. S. Chen, J. F. Hu, B. C. Lim, Y. K. Lim, B. Liu, G. M. Chow, and G. Ju, J. Appl. Phys. 103 (2008) 07F517.
    72. Zebda et al., Appl. Surf. Sci. 254, 4980 (2008)
    73. Wataru Hayami* and Shigeki Otani, J. Phys. Chem. C 2007, 111, 10394-10397

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE