研究生: |
徐志忠 Hsu, Chih-Chung |
---|---|
論文名稱: |
三維流動模擬分析在流體輔助射出成型之研究 Three-Dimensional Flow Analysis for the Simulation of Fluid-assisted Injection Molding Process |
指導教授: |
張榮語
Chang, Rong-Yeu |
口試委員: |
王茂齡
Wang, Mao-Ling 陳夏宗 Chen, Shia-Chung 楊德良 Young, Der-Liang 吳建興 Wu, Chien-Hsing 曾世昌 Tseng, Shi-Chang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 流體輔助射出成型 、共位體心有限體積法 、高解析界面補捉法 、一次及二次流體滲透 |
外文關鍵詞: | fluid assisted injection molding process, collocated finite volume method, high resolution interface capturing scheme, primary and secondary fluid penetration |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
流體輔助射出成型為傳統射出成型帶來突破性之發展,成品內部由於流體掏空,可大幅節省塑膠用料,對塑料及能源成本的降低具有相當顯著的效果。近年來,由於數值方法的成熟及電腦軟硬體技術的提升,使得電腦輔助工程分析在流體射出成型的應用日趨重要。然目前大部分的成型模擬程式都是利用 Hele-Shaw近似法來簡化問題,其主要缺點在於無法預測真正的三維流動現象,以描述出流體輔助成型過程中特有的三維分析現象,如一次和二次滲透、吹穿現象、轉角效應及指紋效應等流體滲透的三維現象。所以,建立一個能真正進行三維模流分析的技術,確有其必要性。
本研究利用利用體心共位式的有限體積法配合 SIMPLER (Semi-Implicit Method for Pressure Linked Equations Revised)去耦合疊代法,達到穩定及快速地求解可壓縮流動統御方程式的目的,並大幅簡化三維計算的複雜性。此外,為了抓取多相界面間成型過程中充填複雜的變化,在固定不變的網格系統下,本研究也建立利用代數體積追蹤法,以高解析界面補捉法 M-CICSAM(Modified-Compressive Interface Capturing Scheme for Arbitrary Meshes)對具有不連續形式的體積分率分程式進行離散及代數求解,從而得到一個鮮明的移動界面位置。
為了驗證本研究方法的正確性,本研究首先檢視所發展出的方法在一般常見的自由面計算例題下的預測性。接著再與文獻上幾何形狀較簡單的模具實驗結果,分析一次和二次滲透及指紋效應等三維流動行為。在這些基礎上,本論文將此三維流動分析技術延伸應用至業界常用的成型製程分析。從分析模擬結果顯示,本研究的三維壓縮流動分析模式確實能正確地預測諸如:複雜幾何下的流體指紋效應、溢流模穴的閥式控制流動行為及塑料倒流法的流體掏空預測。藉由對實際的複雜工業應用案例,進一步驗證本研究方法的正確性及廣泛應用性。
Fluid-assisted injection molding (FAIM) process has brought a
breakthrough development for the traditional injection molding industry. The fluid cores out a network of hollow channels throughout the mold cavity to reduce the cost of energy and plastic evidently. In the recent years, the improvements both in the numerical methods and computer hardware have promoted the application of CAE in the modeling of the injection molding process. The major drawbacks of the Hele-Shaw approximation, commonly used today as a means of simplifying the simulation of FAIM process, are the inherent loss of the ability to predict the important physical three-dimensional phenomena for fluid penetration such as blow-out behavior, corner effect, secondary penetration and the finger effect.
This study presents an implicit finite volume approach to simulate the three-dimensional mold filling problems encountered during the injection molding. The described numerical model deals with the three-dimensional non-isothermal flow of incompressible, non-Newtonian fluids with moving interfaces. The collocated finite volume method and the SIMPLER (Semi-Implicit Method for Pressure Linked Equations Revised) segregated algorithm are used to discretize and solve the flow governing equations. All vector or tensor variables are computed in their Cartesian components, and hence no coordinate transformation is required, which considerably simplifies the complicated fully three-dimensional primitive variables flow calculation. In addition, a high resolution interface capturing scheme M-CICSAM (Modified-Compressive Interface Capturing Scheme for Arbitrary Meshes) is adopted to solve the advection equation to capture the sharp interface on a Eulerian framework.
In order to verify the accuracy of this preliminary study, the study first review the predictability of this developed method in the general common free surface and fluid penetration calculation example. Further this study investigates the analysis on relatively simple geometry of three-dimensional mold to study the general 3D phenomena in FAIM process, such as primary and secondary fluid penetration, and fingering effect in order to verify the correctness of the current approach. Moreover, diverse full shot FAIM processes such as overflow and pushback molding process verify mutually with the experimental results on industrial applications. The results show that our novel three-dimensional numerical model is able to predict the complex fluid penetration behaviors in the real mold and the predictions are also consistent with the experimental results to further verify the accuracy of our approach.
陳晏壽, “液體輔助射出成型製程之研究與探討”, 碩士論文, 長庚大學, 台灣桃園, 2002
L. Li, Y. Peng and W. Wei, “Recent advances on fluid assisted injection molding technique”, Recent Patents on Mechanical Engineering, Vol.7, No.1, 82-91, 2014
W. F. Ames, Numerical methods for partial differential equations, Academic Press, New York, 1977
O. C. Zienkiewicz and R. L. Taylor, The finite element method, McGRAW-Hill, New York, 1989
楊文賢, “有限體積法在塑膠射出成型三維流動分析之研究”, 博士論文, 清華大學, 台灣新竹, 2001
I. Demirdzic, Z. Lilek and M. Peric, “A colocated finite volume method for predicting flows at all speeds”, Int. J. Numer. Meth. Fluids, 16, 1029-1050, 1993
S. R. Mathur and J. Y. Murthy, “A pressure-based method for unstructured meshes”, Numer. Heat Transfer B, 31, 195-215, 1997
C. A. Hieber and S. F. Shen, “Flow analysis of the non-isothermal two-dimensional filling process in injection molding“, Israel J. Tech., 16, 248-254, 1978
S. C. Chen, K. F. Hsu and K. S. Hsu, “Analysis and experimental study of gas penetration in a gas-assisted injection-molded spiral tube”, Journal of Applied Polymer Science, 58(4), 793–799, 1995
S. C. Chen, N. T. Cheng and S. Y. Hu, “Simulations of primary and secondary gas penetration for a gas-assisted injection-molded thin part with gas channel”, Journal of Applied Polymer Science, 67(9), 1553–1564, 1998
G.A.A.V. Haagh, H. Zuidema, F. N. Vosse, G.W.M. Peters and H.E.H. Meijer, “Towards a 3-D finite element model for the gas-assisted injection moulding process”, International Polymer Processing, 12(3), 207-215, 1997
F. Ilinca and J.-F. Hetu, “Three-dimensional finite element solution of gas-assisted injection moulding”, Int. J. Numer. Meth. Engng, 53, 2003–2017, 2002
S. W. Chau, “Three-dimensional simulation of primary and secondary penetration in a clip-shaped square tube during a gas-assisted injection molding process”, Polymer Engineering and Science, 48(9), 1801-1814, 2008
M. Knights, “Water injection molding makes hollow parts faster, lighter”, Plastics Technology , 42-47, 2002
M. Knights, “Water injection molding: It's all coming together”, Plastics Technology , 54-61, 2005
S.-J. Liu and Y.-C. Wu, “Dynamic visualization of cavity-filling process in fluid-assisted injection molding-gas versus water”, Polymer Testing, 26(2), 232-242, 2007
S. J. Liu, Y. C. Wu, and P. C. Lai, “Water penetration stability in water assisted injection molded symmetric ribs”, Intern. Polymer Processing, 20, 352-359, 2005
Y. C. Wu, K. M. Chen, and S. J. Liu, “Core out geometries in water channels of water assisted injection moulded parts”, Plastic Rubber and Composites, 35(10), 425-431, 2006
S. J. Liu, M. J. Lin, and Y. C. Wu, “An experimental study of the water-assisted injection molding of glass fiber filled poly-butylene-terephthalate (PBT) composites”, Composites Science and Technology, 67(7), 1415-1424, 2006
R.Y. Chang, C.-T. Huang, W.-H. Yang, M.-H. Tsai, K.-I. Lu and S.-J. Liu, “The investigation of flow behavior of polymeric melts in the water assisted injection molding”, SPE ANTEC Tech. Paper, 566-569, 2004
A. Polynkin, L. Bai, J.F.T. Pittman, J. Sienz, L. Mulvaney-Johnson, E. Brown, A. Dawson, P. Coates, B. Brookshaw, K. Vinning and J. Butler, “Water assisted injection moulding : development of insights and predictive capabilities through experiments on instrumented process in parallel with computer simulations”, Plastics, Rubber and Composites, 37(2), 131-141, 2008
H. Park, B.S. Cha and B. Rhee, “Experimental and numerical investigation of the effect of process conditions on residual wall thickness and cooling and surface characteristics of water-assisted injection molded hollow products”, Advances in Materials Science and Engineering, 1-11, 2015.
H. Park, B.S. Cha, S.B. Park, J. H. Choi, D. H. Kim, B. Rhee and K. H. Lee, “A study on the void formation in residual wall thickness of fluid-assisted injection molding parts”, Advances in Materials Science and Engineering, 1-6, 2014.
H. P.Heim and H. Potente, Specialized molding techniques: application, design, materials and processing, William Andrew, New York, 2002
L. S. Turng, “Development and application of CAE technology for the gas‐assisted injection molding process”, Advances in Polymer Technology, 14(1), 1-13, 1995
S.J. Liu, “Water assisted injection molding: a review”, International Polymer Processing, 24(4), 315-325, 2009
J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer, New York, 1996
S. Muzaferija and D. Gosman, “Finite-Volume CFD Procedure and Adaptive Error Control Strategy for Grids of Arbitrary Topology”, J. Comput. Phys., 138, 766-787,1997
Q. Li, J. Ouyang, B. Yang and X. Li, “Numerical simulation of gas-assisted injection molding using CLSVOF method”, Applied Mathematical Modeling, 36, 2262-2274, 2012.
D. B. Kothe, “Perspective on eulerian finite volume methods for incompressible interfacial flows”, Technical Report LALP-95-197, Los Alamos National Laboratory, New Mexico, 1995
D. B. Kothe and R. C. Mjolsness, “RIPPLE: A new method for incompressible flows with free surfaces”, AIAA J., 30, 2694-2700, 1992
B. Lafaurie, C. Nardone, R. Scarddovelli, S. Zaleski, and G. Zanetti, “Modeling merging and fragmentation in multiphase flows with SURFER”, J. Comput. Phys., 113, 134-147, 1994
B. P. Leonard, “Bounded higher-order upwind multi-dimensional finite-volume convection-diffusion algorithms”, Advances in Numerical Heat Transfer, Taylor & Francis, London, 1997
J.A. Heyns, A.G. Malan, T.M. Harms and O.F. Oxtoby, “Development of a compressive surface capturing formulation for modelling free‐surface flow by using the volume‐of‐fluid approach”, International Journal for Numerical Methods in Fluids, 71(6), 788-804, 2013
O. Ubbink and R. I. Issa, “A method for capturing sharp fluid interfaces on arbitrary meshes”, Journal of Computational Physics, 153, 26-50, 1999
S. Muzaferija, M. Peric, P. Sames and T. Schellin, “A two-fluid Navier-Stokes solver to simulate water entry”, Proceedings of the 22nd symposium on naval hydrodynamics, Washington, DC., 277-289, 1998
M. Darwish and F. Moukalled, “Convective schemes for capturing interfaces of free-surface flows on unstructured grids”, Numerical Heat Transfer, Part B: Fundamentals 49 (1), 19-42, 2006
D. Zhanga, C. Jianga, D. Liangb, Z. Chena, Y. Yanga and Y. Shia, “A refined volume-of-fluid algorithm for capturing sharp fluid interfaces on arbitrary meshes”, Journal of Computational Physics ,274, 709-736, 2014
E. W. Lemmon and R. T. Jacobsen, “Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air”, International journal of thermophysics, 25.1, 21-69, 2004
P. K. Khosla and S. G. Rubin, “A Diagonally Dominant Second-Order Accurate Implicit Scheme”, Computer Fluids, 2, 207-209, 1974
C.M. Rhie and W.L. Chow, “A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation”, AIAA J., 21, 1525-1532, 1983
F. Darwish and M. Moukalled, “A unified formulation of the segregated class of algorithms for fluid flow at all speeds”, Numerical Heat Transfer: Part B: Fundamentals 37, 103-139, 2000
F. Moukalled and M. Darwish, “A unified formulation of the segregated class of algorithms for fluid flow at all speeds”, Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology, 37(1), 103-139, 2000
C. W. Hirt and B. D. Nichols, “Volume of Fluid (VOF) method for the dynamics of free boundaries“, J. Comput. Phys., 39, 201-225, 1981
M.S. Darwish and F.H. Moukalled, “Normalized variable and space formulation methodology for high-resolution schemes”, Numer. Heat Transf. 26 (1), 79–96, 1994
J. K. Patel and G. Natarajan, “A generic framework for design of interface capturing schemes for multi-fluid flows”, Computers & Fluids, 106, 108-118, 2015
X. Lu, H.H. Chiang, L. Fong, J. Zhao and S. C. Chen, “Study of “gas fingering” behavior in gas‐assisted injection molding”, Polymer Engineering & Science, 39 (1) , 62-77, 1999
K.Y. Lin and S.J. Liu, “The influence of processing parameters on fingering formation in fluid‐assisted injection‐molded disks”, Polymer Engineering & Science, 49 (11), 2257-2263, 2009
X. Guan and R. Pitchumani, “Viscous fingering in a Hele-Shaw cell with finite viscosity ratio and interfacial tension”, Journal of fluids engineering, 125(2), 354-364, 2003
T. Yamamoto, H. Kamikawa, N. Mori and K. Nakamura, “Numerical simulation of viscous fingering in non-Newtonian fluids in a Hele-Shaw cell”, 日本レオロジー学会誌, 30 (3) 121-127, 2002
C.C. Hsu,, C.T. Huang, and R. Y. Chang. “Simulation of dynamic gas penetrations on fingering behaviors during gas-assisted injection molding”, Journal of Polymer Engineering, Published Online: 2017
R.D. Chien, S.C. Chen, M.C. Jeng and H.Y. Yang, “Mechanical properties of gas-assisted injection moulded PS, PP and Nylon parts”, Polymer, 40(11), 2949-2959, 1999
S.Y. Yang, C.T. Lin and J.H. Chang, “Secondary gas penetrations in ribs during full‐shot gas‐assisted injection molding”, Advances in Polymer Technology, 22(3), 225-237, 2003
S.J. Liu and S.P. Lin, “Factors affecting the formation of fingering in water‐assisted injection‐molded thermoplastics”, Advances in Polymer Technology, 25(2), 98-108, 2006
M. Hansen, “Gas-Assist Injection Molding: An Innovative Medical Technology”, Medical Device & Diagnostic Industry, 26, 84-93, 2005
S. Sannen, M. De Munck, J. De Keyzer, and P. Van Puyvelde, “Water-assisted Injection Molding: Validation of 3D Simulations by Experimental Data”, SPE ANTEC Tech. Paper, 1-5, 2012
A. Adema, Y. Yang and R. BOOM, “Coupled DEM-CFD Modeling of the ironmaking blast furnace”, Seventh International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, 1-6, 2009