簡易檢索 / 詳目顯示

研究生: 蔡民仁
論文名稱: 利用成核理論探討相變化記憶體結晶成長之數值模擬
Numerical Simulation of the Phase-Change Memory Crystallization based on the Nucleation Theory
指導教授: 林昭安
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 84
中文關鍵詞: 相變化記憶體數值模擬成核結晶
外文關鍵詞: Phase-Change, Memory, Numerical Simulation, Nucleation, Crystallization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文著重於發展一套模擬相變化記憶體之分析軟體,我們利用能量守恆定理、電核守恆方程式和結晶理論討探相變化記憶體在結晶相與非晶相的熱、電及結晶特性。

    在於結晶過程利用The rate-equation 和 JMAK兩理論來模擬,雖然The rate equation比JMAK理論具有較精確的計算結果,但是其計算時間過長,計算成本過高。而JMAK理論具有不錯的準確度及計算時間很短,成本很低。在模擬結晶過程中,活化能是一個重要的參數,從文獻中得,在低加熱率過程中,其活化能約為2eV,而在高加熱率過程中,為0.81eV。在研究過程中,發現在高加熱率時JMAK理論具有很高的準確度,所以我們利用JMAK理論來模擬相變化記憶體的結晶過程。

    王在以前做過相似的研究,而主要的差別在於王在非晶態過程未加入潛熱,而在結晶態過程只使用溫度判斷是否已完成結晶,其溫度設在170oC。現在我們利用JMAK理論計算結晶分率。在非晶態過程,發現有加入潛熱後,在低操作電壓要求較高的電壓才能相變化,而在結晶過程,發現利用JMAK理論模擬,在高操作電壓過程要求不能太高的電壓,這是因為在高電壓會造成相變化層溫度高於熔點,而造成非晶態的產生。


    The focus of the present thesis is to develop the simulation capability to analyze the performance of the Chalcogenide phase change memory devices. The simulations for the thermal behavior, the electrical properties and the crystallization of the Phase-Change Memory in RESET and SET states have been conducted using the energy equation, the charge conservation law, and nucleation theories. The major focus will be on the computations of crystallization using nucleation theories.

    Two techniques, the rate equation and JMAK theory, to model the GST crystallization are investigated. The rate equation is deemed to be a more accurate method. However due to the excessive computational effort required, it is not practical to use this technique in real PCM simulation. JMAK model, on the other hand, is less accurate, but if proper parameters are used, the results can be compatible with the rate equations. It was found that the most crucial parameters used in the model is the activation energy, which is function of the heating rate. At lower heating rate, the activation energy is about 2 eV, while at higher heating rate the activation energy is around 0.81 eV. In the real PCM operation, the heating rate is more than 106 0C, therefore the the adopted activation energy should be 0.81 eV. Simulation using the JMAK theory at high heating rate with this activation energy shows good results in comparisons with the measurements available. Therefore, the JMAK model was adopted to simulate the crystallization process in a PCM device.

    Previously, Wang [4] has conducted similar simulations of the PCM devices. There are two major differences between the present predictions and Wang’s results. Firstly, in the RESET operation, Wang did not include the enthalpy of fusion heat in the simulation. Secondly, in the SET operation Wang adopted the predefined temperature 170 oC as the criteria to judge the completion of phase change. Instead, the present study employs the JMAK model to determine the fraction of the crystallization. In comparisons to the results of Wang, the minimum voltage required increases slightly with the heat of fusion included in the simulation, which indicates a slightly higher power is required. On the other hand, the voltage required to complete the SET operation using the JMAK model does decrease at higher BEC width comparing with the results from Wang [4].

    Abstract ---------------------------------------------------------- i Acknowledgement---------------------------------------------- iii Nomenclature --------------------------------------------------- iv Contents ---------------------------------------------------------- vii Chapter 1 Introduction --------------------------------------- 1 1.1 Introduction ------------------------------------------------------------------------- 1 1.2 The Structure of Phase-Change Memory (PCM) and Material Properties - 2 1.3 Characteristic of chalcogenide phase-change memory ----------------------- 3 1.4 Literature Survey ------------------------------------------------------------------- 5 1.5 Objective and Motivation --------------------------------------------------------- 10 Figures ------------------------------------------------------------------------------------ 13 Chapter 2 Theory ---------------------------------------------- 17 2.1Phase Change and Crystal ---------------------------------------------------------- 17 2.2 Nucleation and Growth ------------------------------------------------------------ 18 2.3 Johnson-Melhl-Avrami-Kolmogorov (JMAK) Theory ------------------------ 19 2.4 The Rate-Equation ------------------------------------------------------------------ 20 2.5 Energy Equation -------------------------------------------------------------------- 24 2.6 Charge Conservation Law --------------------------------------------------------- 25 Figures ------------------------------------------------------------------------------------ 27 Chapter 3 Numerical methods ------------------------------- 29 3.1 Discretization of the Rate-Equation ---------------------------------------------- 29 3.2 Discretization of the Energy Equation ------------------------------------------- 30 3.3 Discretization of the Charge Conservation Law -------------------------------- 33 3.4 Initial and Boundary Conditions ----------------------------------------------- 35 3.5 Determination of the Electrical Resistance and the Joule Resistance Heating ----------------------------------------------------------------------------- 36 Figures ------------------------------------------------------------------------------------ 40 Chapter 4 Results and Discussion -------------------------- 41 4.1 Simulation the Crystallization Fraction by the Rate-Equation --------------- 41 4.1-1 The Influence of Parameter -------------------------------------------------- 42 4.1-2 Comparison with the experimental measurements by the rate- equation ----------------------------------------------------------------- 44 4.2 Comparison with the experimental measurements by the JMAK Theory -- 46 4.3 Comparisons of the predictions using the Rate-Equation and JMAK Theory ------------------------------------------------------------------------------ 47 4.4 Simulations of PCM RESET and SET operations ----------------------------- 48 4.4-1 Grid Independent and Time step Tests ------------------------------------ 48 4.4-2 Effects of the Cross-Section Area of BEC at the RESET stage ------- 49 4.4-3 Effects of the Thickness of PC layer at the RESET stage -------------- 50 4.4-4 Effects of the Current Limiting Resistance Rs -------------------------- 50 4.4-5 RESET and SET Simulations ---------------------------------------------- 51 4.5 Comparison with the results of Wang -------------------------------------------- 53 Figures ------------------------------------------------------------------------------------ 55 Chapter 5 Conclusions ---------------------------------------- 79 Reference ---------------------------------------------------------------------------- 82

    1. Y. Kakimoto and M. Suzuki, Nonvolatile Memory Based on Phase Change in Se-Sb-Te glass, Jpn. J. Appl. Vol. 42 (2003) pp.404-408.
    2. S. Tyson, G. W.icher, T. Lowrey, S. Hudgens, and K. Hunt, Novolatile, High Density, High Performance Phase-Change Memory, Areo Space Conference Proc., Vol. 5 (2000) pp.389-390.
    3. Technology Presentation, http://www.ovonyx.com
    4. C. C. Wang, Numerical Investigation on Heat Transfer of the Phase-Change Memory, Master thesis, National Tsing Hua University, Taiwan, 2003.
    5. E. K. Kim and S. I. Kwun, Thermal Boundary Resistance at Ge2Sb2Te5 /ZnS:SiO2 Interface, Appl. Phys. Lett. Vol76, No26, 3864 (2000).
    6. S. Senkader and C. D. Wright, Models for Phase-Change of Ge2Sb2Te5 in Optical and Electrical Memory Devices, J. Appl. Phy. Vol. 95, No. 2 (2004) pp.504-511.
    7. Z. FAN and D. E. LAUGHLIN, Three Dimensional Crystallization Simulation and Recording Layer Thickness Effect in Phase Change Optical Recording, Jpn. J. Appl. Phys. Vol. 42 (2003) pp.1-4.
    8. L. H. Chou, C. P. Jen and C. C. Chieng, Simulation Study of Phase-Change Optical Recording Disks, Jpn. J. Appl. Phys. Vol. 39 (1999) pp.1614-1620.
    9. Y. C. Chen and H. P. Chen, A High Performance 180nm Nonvolatile Memory Cell Using Phase-Change Sn-doped Ge2Sb2Te5 Chalcogenide, VLSI Technology, Systems, and Applications, 2003 International Symposium on, 6-8 Oct. 2003 pp.32-35.
    10. D. H. Kang, D. H. Ahn, K. B. Kim, J. F. Webb, and K. W. Yi, One-dimensional heat conduction model for an electrical phase change random access memory device with an 8F2 memory cell (F=0.15 ), J. Appl. Phys. Vol. 94, No. 5 (2003) pp.3536-3542.
    11. D. Salamon and B. F. Cockburn, An Electrical Simulation the Chalcogenide Phase-Change Memory Cell ,Memory Technology, Design and Testing, 2003. Records of the 2003 International Workshop on 28-29 July 2003 Page(s):86 – 91.
    12. N. Yamada, E. Ohno, K. Nishiuchi, and N. Akjahira, Rapid-Phase Transitions of GeTe-Sb2Te3 Pseudobinary Amorphous Thin Films for an Optical Disk Memory, J. Appl. Phys. 69,(1991) pp.2849-2856.
    13. Z. Fan, D. E. Laughlin, 3-D Crystallization Simulation in Phase Change Recording Media, Optical Memory and Optical Data Storage Topical Meeting, 2002. International Symposium on 7-11 July 2002 Page(s):66 – 68.
    14. T. Maeda, Y. Nishi, H. Kando and M. Terao, Amorphization and Crystallization Simulation Method, E*PCOS 01 Symposium (2001).
    15. I. Friedrich and V. Weidenhof, Structural Transformations of Ge2Sb2Te5 Films Studied by Electrical Resistance Measurements, J. Appl. Phys. Vol. 87,(2000), pp. 4130,(2000).
    16. W. K. Njoroge, H. W. Woltgens and M. Wuttig, Density Change upon Crystallization of Ge2Sb2.04Te4.74 Films, J. Vac. Sci. Technol. A 20(1) (2002) pp. 230.
    17. V. Weidenhof, I. Friedrich, S. Ziegler and M. Wuttig, Laser Induced Crystallization of Amorphous Ge2Sb2Te5 Films, J. Appl. Phys. Vol. 89 (2001), pp.3168-3176.
    18. C. Trappe, B. Bechevet, B. Hyot and O. Winkler, Stefan FACSKO, and Heinrich KURZ, Recrystallization Dynamics of Phase Change Optical Disks with a Nitrogen Interface Layer, Jpn. J. Apn. Phys. Vol. 39 (2000) pp.766-769.
    19. G. Ruitenberg, A. K. Petford-Long and R. C. Doole, Determination of the Isothermal Nucleation and Growth Parameters for the Crystallization of Thin Ge2Sb2Te5 Films, J. Appl. Phys. Vol. 92 (2002), pp. 3116-3123.
    20. D. Kashchier, Nucleation basic theory with applications, Butterworth-Heinemann (2000).
    21. K. F. Kelton, A. L. Greer, and C. V. Thompson, Transient Nucleation in Condensed Systems, J. Chem. Phys. Vol. 79 (1983) pp.6261-6276.
    22. H. B. Singh and A. Holz, Solid State Commoun. 45, 985 (1983).
    23. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer (1996)
    24. C. H. Mastrangelo PhD Thesis “ Thermal Applications of Microbridges “ UCB (1991)
    25. D. Turnbull and J. C. Fisher, J. Chem. Phys. 17, 71 (1949).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE