研究生: |
朱振嘉 Jhu, Jhen-Jia. |
---|---|
論文名稱: |
基於第三代製程能力指標發展三種型態快速轉換抽樣系統 Developing Three Types of Quick Switching Sampling Systems Based on the Third-Generation Capability Index |
指導教授: |
吳建瑋
Wu, Chien-Wei |
口試委員: |
蘇明鴻
Su, Ming-Hung 張英仲 Chang, Ying-Chung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 製程能力指標 、驗收抽樣計畫 、快速轉換抽樣系統 、操作特性曲線 、平均抽樣樣本數 、平均連串長度 |
外文關鍵詞: | process capability index, acceptance sampling plan, quick switching sampling system, operating characteristic curve, average sample number, average run length |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的進步、生產技術的提升,產品種類越來越多元,「品質」成為吸引消費者購買的重要因素,也因高度競爭環境,生產者更加重視自身產品品質並利用統計品質管制來提升品質。驗收抽樣計畫(acceptance sampling plan)是一個實用的工具,透過抽樣檢驗提供有效的資訊給決策者進行貨批判定。
快速轉換抽樣系統(Quick Switching Sampling system, QSS system)包含正常檢驗及加嚴檢驗兩種單次驗收抽樣計畫,可以根據歷史資訊在兩種檢驗計畫下進行快速轉換,已被證實可以減少抽樣成本因而被廣泛使用。另外製程能力指標也常被用來衡量品質,其中第三代製程能力指標 除了考量良率和變異之外,同時可以反映產品的品質損失。本研究目的為發展基於製程能力指標 之計量型快速轉換抽樣系統,並且針對三種不同參數組合之抽樣系統,建構其最佳化數學模型,並利用非線性規劃求解出三種抽樣系統參數值。透過操作特性曲線(Operating Characteristic curve, OC curve)、平均抽樣樣本數(Average Sample Number, ASN)以及平均連串長度(Average Run Length, ARL)分析系統的績效,並且與單次驗收抽樣計畫比較。最後以實際案例說明本研究提出之抽樣系統的操作流程,供未來使用者作參考。
Nowadays, numbers of variety of products have been produced, people pay more attention to the quality of products. Many scholars proposed various acceptance sampling plans, which can be a practical quality tool.
Acceptance sampling plan provides rules for making a decision of product acceptance with the preset quality requirement. A quick switching sampling (QSS) system, which consists of normal sampling plan and tightened sampling plan, has been proposed for lot inspection. This system has been shown to reduce sampling costs by switching flexibly according to quality inspections in the past. The purpose of this research is to develop a variables quick switching sampling system (VQSS) based on the third-generation process capability index. In order to obtain the parameters of VQSS system, a minimization problem is constructed. The performance of the proposed system is also investigated with Operating Characteristic (OC) curve, Average Sample Number (ASN) and Average Run Length (ARL), and then compared to the traditional single sampling plan. Finally, the practical case is used to illustrate the sampling system proposed in this research for future reference.
一、中文文獻
1. 陳冠潔 (2016)。基於製程能力指標之產出績效檢定與驗收抽樣計畫操作平台建構。未出版碩士論文,國立清華大學工業工程與工程管理學系,新竹市。
二、英文文獻
1. Aslam, M., Azam, M., & Jun, C. H. (2013). Multiple dependent state sampling plan based on process capability index. Journal of Testing and Evaluation, 41(2), 340-346.
2. Balamurali, S., & Jun, C. H. (2007). Multiple dependent state sampling plans for lot acceptance based on measurement data. European Journal of Operational Research, 180(3), 1221-1230.
3. Balamurali, S., & Usha, M. (2012). Variables quick switching system with double specification limits. International Journal of Reliability, Quality and Safety Engineering, 19(02), 1250008.
4. Boyles, R. A. (1991). The Taguchi capability index. Journal of Quality Technology, 23, 17-26.
5. Chan, L. K., Cheng, S. W., & Spiring, F. A. (1988). A new measure of process capability. Journal of Quality Technology, 20(3), 162-175.
6. Chen, S. M., & Hsu, N. F. (1995). The asymptotic distribution of the process capability index C_pmk. Communications in Statistics-Theory and Methods, 24(5), 1279-1291.
7. Dodge, H. F. (1967). A new dual system of acceptance sampling. Technical Report No. 16, The Statistics Center.
8. Dodge, H. F., & Romig, H. G. (1929). A method of sampling inspection. Bell Labs Technical Journal, 8(4), 613-631.
9. Govindaraju, K., & Kuralmani, V. (1992). Modified tables for the selection of qss–1 quick switching system for a given (aql, lql). Communications in Statistics-Simulation and Computation, 21(4), 1103-1123.
10. Hsiang, T. C., & Taguchi, G. (1985). A tutorial on quality control and assurance-the Taguchi methods. ASA Annual Meeting, Las Vegas.
11. Juran, J. M. (1974). Quality Control Handbook. McGraw-Hill (New York).
12. Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18(1), 41-52.
13. Liu, S. W., & Wu, C. W. (2016). A quick switching sampling system by variables for controlling lot fraction nonconforming. International Journal of Production Research, 54(6), 1839-1849.
14. Montgomery, D. C. (2009). Introduction to Statistical Quality Control. John Wiley & Sons (New York).
15. Pearn, W. L., & Lin, P. C. (2002). Computer program for calculating the p‐value in testing process capability index Cpmk. Quality and Reliability Engineering International, 18(4), 333-342.
16. Pearn, W. L., & Shu, M. H. (2004). Measuring manufacturing capability based on lower confidence bounds of Cpmk applied to current transmitter process. The International Journal of Advanced Manufacturing Technology, 23(1-2), 116-125.
17. Pearn, W. L., Kotz, S., & Johnson, N. L. (1992). Distributional and inferential properties of process capability indexes. Journal of Quality Technology, 24(4), 216-231.
18. Romboski, L. (1969). An Investigation of Quick Switching Acceptance Sampling System. Unpublished PhD Dissertation. New Brunswick, NJ, Rutgers State University.
19. Romboski, L. D. (1990). Quick Switching Systems in Acceptance Sampling. In Statistical Sampling: Past, Present and Future Theoretical and Practical. ASTM International.
20. Seidel, W. (1997). Is sampling by variables worse than sampling by attributes? A decision theoretic analysis and a new mixed strategy for inspecting individual lots. Sankhyā: The Indian Journal of Statistics, Series B, 96-107.
21. Sherman, R. E. (1965). Design and evaluation of a repetitive group sampling plan. Technometrics, 7(1), 11-21.
22. Soundararajan, V., & Arumainayagam, S. D. (1990). Construction and selection of modified quick switching systems. Journal of Applied Statistics, 17(1), 83-114.
23. Soundararajan, V., & Palanivel, M. (2000). Quick switching variables single sampling (QSVSS) system indexed by AQL and AOQL. Journal of Applied Statistics, 27(6), 771-778.
24. Vännman, K. (1997). Distribution and moments in simplified form for a general class of capability indices. Communications in Statistics-Theory and Methods, 26(1), 159-179.
25. Wu, C. W., Aslam, M., & Jun, C. H. (2012). Variables sampling inspection scheme for resubmitted lots based on the process capability index C_pk. European Journal of Operational Research, 217(3), 560-566.
26. Wu, C. W., Lee, A. H., Liu, S. W., & Shih, M. H. (2017). Capability-based quick switching sampling system for lot disposition. Applied Mathematical Modelling, 52, 131-144.