研究生: |
李佳錦 Li, Jia-Jin |
---|---|
論文名稱: |
聚乳酸甘醇酸微球混合水膠包覆阿黴素作為緩釋系統之研究 Study of Doxrubicin-loaded Microspheres in polypeptide Hydrogel system for drug delivery |
指導教授: |
朱一民
Chu, I-Ming |
口試委員: |
孫一明
Sun, Yi-Ming 王潔 Wang, Jane |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 雙乳化法 、聚乳酸甘醇酸微球 、緩釋系統 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著世界癌症病例逐年上升,阿黴素作為抗癌藥物有良好的效用,但其副作用、快速降解、親水等特性限制其臨床上的使用,希望設計藥物載體以解決本問題。本實驗使用雙乳化法製作微球包覆阿黴素配合水膠方式與混合水膠方式觀察阿黴素藥物釋放情形,微球材料方面使用生物可降解型材料(poly(lactic-co-glycolic acid),PLGA),水膠材料方面使用市售水膠F-127與本實驗室合成的水膠(Poloxamer-p(Ala)-p(Lys),PLXAL)。
水膠合成經由FTIR與氫核磁共振光譜鑑定成功合成出高分子水膠(PLXAL),經由倒置法證明5wt%下能穩定在37℃成膠,顯示水膠低成膠濃度特性。降解實驗中PLXAL展現了高度穩定性與不易降解性,而F-127則具有快速降解特性,在PLXAL中參雜入水膠F-127發現結果會影響加速水膠降解速率,顯示混合水膠可做為一種調控降解速率方式。利用掃描式電子顯微鏡發現高分子水膠為依序排列片狀並具有三維網狀結構,加入水膠F-127後仍保有部分片狀結構,高分子微球部分,微球材料表面具有表面缺陷,隨著時間降解表面缺陷會越來越明顯,最後崩解出現的多孔洞結構證實有足夠空間包覆阿黴素,使用光學顯微計算微球粒徑,微球粒徑會隨著界面活性劑濃度而改變(60-80微米)。
藥物包覆率方面,水膠的包覆率皆在98%以上,微球方面T包覆率會隨著介面活性劑濃度與藥物投放量而變,經實驗參數的調整後,對於藥物阿黴素包覆率達到13.7%,說明以雙乳化法製作高分子微球具有包覆親水藥物能力。生物相容性實驗中,水膠微球與水膠系統都顯示高生物相容性。藥物釋放實驗中,實驗結果證實水膠包覆微球系統下有更佳緩釋效果、避免突釋的能力,而混合水膠表現出更快速的釋放速率與更高的釋放率,顯示混合水膠可為一種調控釋放方式。
The global epidemic of cancer is constant increasing. Doxorubicin is a widely used as chemotherapy agent. Despite its utility, several side effects were induced, especially its irreversible cardiotoxicity and nephrotoxicity, limiting its clinic application. To solve this issue, we used double emulsion method to prepare doxorubicin-loaded microspheres in hydrogel system. The microspheres were prepared by biodegradable materials. Hydrogels were hydrogel F-127 and polypeptide hydrogel Poloxamer-p(Ala)-p(Lys).
The characteristic of final synthetic production was examined by H-NMR, FT-IR and GPC. It showed that the copolymer PLXAL was successfully synthesized. By test-tube inversion method, P-PLX-Ala-Lys formed hydrogel at 37℃ with low concentration 5wt%. Furthermore, in vitro degradation test, PLXAL showed high stability and low-degradability; on the contrary, hydrogel F-127 group showed its easily degradable characteristics. We found that the mixed hydrogel system (5wt%PLXAL:3wt%F-127) would affect the degradation rate of hydrogel. The SEM micrograph indicated that these hydrogels arranged in a fibrous cross-linked structure and microspheres had defect on the surface in the beginning. As the collapse of microspheres, we observed that microspheres had porous structure, which made these microspheres to be as drug carriers. In the following, the particle size of microspheres was determined by OM. We found that the particle size was changeable from 60 to 80 micrometers depended on different concentrations of surfactant (PVA).
After that, the Encapsulation Efficiency (EE) and the Drug Loading (DL) were evaluated. In encapsulation test, the EE of hydrogels were approximately 98%. The EE and DL of microspheres were depended on the concentration of surfactant and the amount of loading-drug. After adjustment, EE of microspheres up to 13%. These results demonstrated that microspheres had the potential of hydrophilic drug encapsulation. In additional, hydrogels and microspheres showed their excellent biocompatibility. In vitro drug release experiment, drug release rates in hydrogels and microspheres in hydrogel system were measured for two weeks. No burst release happened in microspheres system and had better prolonged release than hydrogel systems. In terms of mixed hydrogel, the release rates were higher than PLXAL hydrogel. In summary, microspheres with hydrogel had stable drug release, compare with higher release rate of mixed hydrogel.Both of them can reach specific requirement for different application for drug delivery system.
1. Hoare, T. R., & Kohane, D. S. (2008). Hydrogels in drug delivery: Progress and challenges. Polymer, 49(8), 1993-2007.
2. Jun Fu, Marc in het, Hydrogel properties and applications, 2019, ROYAL of society chemistry, 7,2019, p.1523-1525
3. Sun, T. L., Kurokawa, T., Kuroda, S., Ihsan, A. B., Akasaki, T., Sato, K., ... & Gong, J. P. (2013). Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nature materials, 12(10), 932-937.
4. Wang, K., & Han, Z. (2017). Injectable hydrogels for ophthalmic applications. Journal of Controlled Release, 268, 212-224.
5. Bordi, F., Paradossi, G., Rinaldi, C., & Ruzicka, B. (2002). Chemical and physical hydrogels: two casesystems studied by quasi elastic light scattering. Physica A: Statistical Mechanics and its Applications, 304(1-2), 119-128.
6. He, C., Kim, S. W., & Lee, D. S. (2008). In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. Journal of controlled release, 127(3), 189-207.
7. Qiu, Y., & Park, K. (2001). Environment-sensitive hydrogels for drug delivery. Advanced drug delivery reviews, 53(3), 321-339.
8. Bajpai, A. K., Shukla, S. K., Bhanu, S., & Kankane, S. (2008). Responsive polymers in controlled drug delivery. Progress in Polymer Science, 33(11), 1088-1118.
9. Zhao, H., An, H., Xi, B., Yang, Y., Qin, J., Wang, Y., ... & Wang, X. (2019). Self-healing hydrogels with both LCST and UCST through cross-linking induced thermo-response. Polymers, 11(3), 490.
10. Huang, H., Qi, X., Chen, Y., & Wu, Z. (2019). Thermo-sensitive hydrogels for delivering biotherapeutic molecules: A review. Saudi Pharmaceutical Journal, 27(7), 990-999.
11. Huynh, C. T., Nguyen, M. K., & Lee, D. S. (2011). Injectable block copolymer hydrogels: achievements and future challenges for biomedical applications. Macromolecules, 44(17), 6629-6636.
12. Arcamone, F., Cassinelli, G., Fantini, G., Grein, A., Orezzi, P., Pol, C., & Spalla, C. (1969). Adriamycin, 14‐hydroxydaimomycin, a new antitumor antibiotic from S. Peucetius var. caesius. Biotechnology and bioengineering, 11(6), 1101-1110.
13. Gewirtz, D. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical pharmacology, 57(7), 727-741.
14. Thorn, C. F., Oshiro, C., Marsh, S., Hernandez-Boussard, T., McLeod, H., Klein, T. E., & Altman, R. B. (2011). Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenetics and genomics, 21(7), 440.
15. Swain, S. M., Whaley, F. S., Gerber, M. C., Weisberg, S., York, M., Spicer, D., ... & Gams, R. A. (1997). Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. Journal of Clinical Oncology, 15(4), 1318-1332.
16. Wojnowski, L., Kulle, B., Schirmer, M., Schlüter, G., Schmidt, A., Rosenberger, A., ... & Hasenfuss, G. (2005). NAD (P) H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation, 112(24), 3754-3762.
17. Mishra, S., & Palanivelu, K. (2008). The effect of curcumin (turmeric) on Alzheimer's disease: An overview. Annals of Indian Academy of Neurology, 11(1), 13.
18. Mehrotra, N., Gupta, M., Kovar, A., & Meibohm, B. (2007). The role of pharmacokinetics and pharmacodynamics in phosphodiesterase-5 inhibitor therapy. International journal of impotence research, 19(3), 253-264.
19. Lin, C. C., & Metters, A. T. (2006). Hydrogels in controlled release formulations: network design and mathematical modeling. Advanced drug delivery reviews, 58(12-13), 1379-1408.
20. Amsden, B. (1998). Solute diffusion within hydrogels. Mechanisms and models. Macromolecules, 31(23), 8382-8395.
21. Siepmann, J., & Peppas, N. A. (2012). Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced drug delivery reviews, 64, 163-174.
22. Li, S. (1999). Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials, 48(3), 342-353.
23. Lloyd, A. W. (2002). Interfacial bioengineering to enhance surface biocompatibility. Medical device technology, 13(1), 18-21.
24. Katti, D. S., Lakshmi, S., Langer, R., & Laurencin, C. T. (2002). Toxicity, biodegradation and elimination of polyanhydrides. Advanced drug delivery reviews, 54(7), 933-961.
25. Von Burkersroda, F., Schedl, L., & Göpferich, A. (2002). Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 23(21), 4221-4231.
26. Jeffery, H., Davis, S. S., & O'Hagan, D. T. (1993). The preparation and characterization of poly (lactide-co-glycolide) microparticles. II. The entrapment of a model protein using a (water-in-oil)-in-water emulsion solvent evaporation technique. Pharmaceutical research, 10(3), 362-368.
27. Mehta, R. C., Thanoo, B. C., & Deluca, P. P. (1996). Peptide containing microspheres from low molecular weight and hydrophilic poly (d, l-lactide-co-glycolide). Journal of Controlled Release, 41(3), 249-257.
28. Yang, Y. Y., Chung, T. S., Bai, X. L., & Chan, W. K. (2000). Effect of preparation conditions on morphology and release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion method. Chemical Engineering Science, 55(12), 2223-2236.
29. Aditya, N. P., Aditya, S., Yang, H., Kim, H. W., Park, S. O., & Ko, S. (2015). Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food chemistry, 173, 7-13.
30. Md. Shirajur Rahman et al, Morphological Characterization of Hydrogels, Polymers and Polymeric Composites: A Reference Series ,2019, p. 819-863
31. Yang, Y. Y., Chung, T. S., & Ng, N. P. (2001). Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials, 22(3), 231-241.
32. Zolnik, B. S., & Burgess, D. J. (2007). Effect of acidic pH on PLGA microsphere degradation and release. Journal of Controlled Release, 122(3), 338-344.
33. Kadlecova, Z., Baldi, L., Hacker, D., Wurm, F. M., & Klok, H. A. (2012). Comparative study on the in vitro cytotoxicity of linear, dendritic, and hyperbranched polylysine analogues. Biomacromolecules, 13(10), 3127-3137.
34. Jonker, A. M., Löwik, D. W., & Van Hest, J. C. (2012). Peptide-and protein-based hydrogels. Chemistry of Materials, 24(5), 759-773.
35. Makadia, H. K., & Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377-1397.
36. Yu, L., Chang, G., Zhang, H., & Ding, J. (2007). Temperature‐induced spontaneous sol–gel transitions of poly (d, l‐lactic acid‐co‐glycolic acid)‐b‐poly (ethylene glycol)‐b‐poly (d, l‐lactic acid‐co‐glycolic acid) triblock copolymers and their end‐capped derivatives in water. Journal of Polymer Science Part A: Polymer Chemistry, 45(6), 1122-1133.