簡易檢索 / 詳目顯示

研究生: 吳宇容
Wu, Yu-Jung
論文名稱: 以Cardboard VR探索阿美族文化搭配太陽觀測系統對學生的學習成就、學習動機與認知負荷之影響
The Effects of Combining Cardboard VR Exploration of Amis Culture with a Sun Observation System on Students' Learning Achievement, Learning Motivation and Cognitive Load
指導教授: 唐文華
Tarng, Wern-Huar
區國良
Ou, Kuo-Liang
口試委員: 游坤明
Yu, Kun-Ming
林志明
Lin, Chi-Ming
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 學習科學與科技研究所
Institute of Learning Sciences and Technologies
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 100
中文關鍵詞: Cardboard VR阿美族文化祭儀原住民科學認知負荷情境式學習
外文關鍵詞: Cardboard VR, Amis cultural rituals, indigenous science, cognitive load, situated learning
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討阿美族傳統文化祭儀及自然科學學習,藉由虛擬實境技術開發出「Cardboard VR探索阿美族文化搭配太陽觀測系統」學習軟體,搭配探索任務關卡設計,引發學習者的學習動機與興趣,並分析其學習內容對於學習者之學習成就、學習動機與認知負荷之影響。本系統是以花蓮阿美族傳統文化祭儀與周遭自然生態搭配國小自然科學-太陽單元作為教學主題,收錄「阿美族奇美與靜浦部落」、「北回歸線界標」、「新社梯田」、「秀姑巒溪」等自然生態環境及動植物、太陽相關知識內容,使學生能夠在學習阿美族文化的同時,也能夠將自然科學知識融入於其中。本研究選定桃園楊梅某國小三年級學生共47人為研究對象,採用準實驗設計,分為實驗組26人,操作本系統結合學習單進行教學;對照組21人,進行一般傳統投影片教學,教學內容相同,教學時間皆為兩節課,共80分鐘。本研究之研究工具包含:「Cardboard VR探索阿美族文化搭配太陽觀測系統滿意度問卷」、「阿美族文化與花東自然科學生態學習成就測驗」、「阿美族文化與花東自然科學生態認知負荷問卷」以及「阿美族文化與花東自然科學生態學習動機問卷」。
    由本研究結果分析顯示出:(1)學習者在使用本系統時感受性為高度滿意。(2)使用本系統對於學習者在阿美族文化與自然科的學習成就顯著優於傳統投影片教學。(3)使用本系統對於學習者的認知負荷較一般教學的認知負荷低。(4)使用本系統對學習者在阿美族文化與自然科學學習上的學習動機顯著優於一般教學方式。由以上可得知,使用此系統可以促進學習者對阿美族文化以及花東生態環境的認識,並且藉由虛擬實境系統可以激發學習者對於自然科學知識的好奇心。


    This study aims to integrate traditional Amis cultural rituals and natural science learning through the development of a “Cardboard VR Exploration of Amis Culture with Solar Observation System” learning software using virtual reality technology. The software includes exploration missions to stimulate learners’ motivation and interest while a teaching experiment is used to exam the impact of its content on learners’ academic achievements, motivation, and cognitive load. The system combines the traditional Amis cultural rituals from Hualien with the natural ecology of the surrounding area, focusing on elementary school-level natural science and the sun as the teaching theme. It encompasses various natural environments, flora, fauna, and knowledge related to the sun, such as “Amis Tribe Chimei and Jingpu Tribes”, “Tropic of Cancer Marker”, “Xinshe Terraced Fields”and “Xiuguluan River”, allowing students to acquire natural science knowledge while learning about Amis culture. This research involved 47 third-grade students from an elementary school in Yangmei, Taoyuan. It employed a quasi-experimental design, with 26 students in the experimental group using the VR system combined with worksheets for instruction and 21 students in the control group receiving conventional slide-based instruction. Both groups had two class periods, totaling 80 minutes for instruction. Research instruments in this study included: (1) the satisfaction questionnaire towards this system, (2) the Amis culture and Hualien natural science ecological learning achievement test, (3) the Amis culture and Hualien natural science ecological cognitive load questionnaire, and (4) the Amis culture and Hualien natural science ecological learning motivation questionnaire.
    The analysis of the results in this study indicated: (1) Learners expressed a high level of satisfaction when using this system. (2) The use of this system significantly enhanced learners’ academic achievements in both Amis culture and natural science when compared to the traditional teaching method. (3) The use of this system did not impose excessively high cognitive load on learners; in fact, it resulted in lower cognitive load compared to conventional teaching. (4) Learners' motivation to study Amis culture and natural science using this system was significantly higher than that of the traditional teaching method. Based on the above findings, using this system can enhance learners' understanding of Amis culture and the natural environment of eastern Taiwan. Additionally, through the use of virtual reality systems, it can stimulate learners' curiosity about natural science knowledge.

    目次 第一章 緒論--------------------1 第一節 研究背景與動機-----------1 第二節 研究目的與問題-----------3 第三節 研究範圍與限制-----------4 第四節 名詞解釋----------------5 第二章 相關文獻之回顧與探討-----6 第一節 虛擬實境----------------6 第二節 阿美族文化及科學學習-----15 第三節 情境式學習--------------22 第四節 認知負荷----------------31 第三章 系統開發設計規劃---------37 第一節 系統開發環境與工具-------37 第二節 系統設計開發與架構-------39 第三節 系統內容----------------46 第四章 研究方法與結果-----------50 第一節 研究流程----------------50 第二節 研究對象----------------51 第三節 教學課程設計------------51 第四節 研究設計----------------55 第五節 研究工具----------------57 第六節 資料處理與統計分析-------59 第七節 研究結果分析與發現-------61 第五章 結論與建議--------------71 第一節 研究結論----------------71 第二節 研究建議----------------73 參考文獻-----------------------75 一、 中文文獻---------------75 二、 英文文獻---------------77 附錄---------------------------84 附錄一:Cardboard VR探索阿美族文化搭配太陽觀測系統滿意度問卷-------84 附錄二:阿美族文化與花東自然科學生態教案設計-----------------------85 附錄三:阿美族文化與花東自然科學生態學習成就測驗前測----------------88 附錄四:阿美族文化與花東自然科學生態學習成就測驗後測----------------93 附錄五:阿美族文化與花東自然科學生態認知負荷問卷-------------------98 附錄六:阿美族文化與花東自然科學生態學習動機問卷-------------------99 表目錄 表 2-1虛擬實境應用在科學教育之相關研究-----------------------------12 表 2-2原住民科學之相關研究----------------------------------------20 表 2-3情境式學習應用在科學教育之相關研究---------------------------28 表 3-1系統開發環境與工具------------------------------------------39 表 3-2系統學習主題與學習內容--------------------------------------47 表 4-1阿美族文化與自然科學生態教案設計簡易介紹----------------------53 表 4-2研究設計表-------------------------------------------------56 表 4-3資料收集與分析方式整理--------------------------------------61 表 4-4實驗組對照組的學習動機之獨立樣本t檢定結果---------------------62 表 4-5阿美族文化與自然生態科學學習動機問卷調查統計敘述及顯著性-------63 表 4-6實驗組與對照組認知負荷之獨立樣本t檢定結果---------------------64 表 4-7阿美族文化與自然科學生態認知負荷問卷調查統計敘述及顯著性--------65 表 4-8「阿美族文化與自然科學生態學習成就測驗」前後測成績統計資料分析結果-67 表 4-9實驗組與對照組的學習成就前後測之成對樣本t檢定結果--------------67 表 4-10「阿美族文化與自然生態科學學習成就測驗」單因子共變數分析摘要表-68 表 4-11系統滿意度問卷項目與整體平均數與標準差-----------------------69 圖目錄 圖 2-1情境學習的基本概念 (Lave & Wenger, 1991)--------------------23 圖 3-1使用Unity 3D引擎實作之畫面----------------------------------37 圖 3-2著色與未著色FBX 3D模型--------------------------------------38 圖 3-3系統之UIUX介面---------------------------------------------38 圖 3-4本系統之簡易開發流程圖--------------------------------------39 圖 3-5學習者操作Cardboard VR的實際畫面----------------------------40 圖 3-6學習者操作Cardboard VR時雙眼錯覺形成的畫面-------------------40 圖 3-7本系統設計與開發流程圖--------------------------------------41 圖 3-8本系統遊戲首頁---------------------------------------------42 圖 3-9本系統探索大廳---------------------------------------------42 圖 3-10本系統景點架構圖------------------------------------------43 圖 3-11秀姑巒溪某一場域的虛擬物件觸發互動事件之功能說明-------------44 圖 3-12前往到其他場景區域之介面-----------------------------------44 圖 3-13完成所有場域探索任務進度條的變化情形------------------------45 圖 3-14任務未完成與任務完成圖標-----------------------------------45 圖 3-15本系統操作架構簡易圖---------------------------------------45 圖 3-16本研究之學習架構圖-----------------------------------------46 圖 3-17原住民文物館空照圖、觀察點位置及觀看畫面---------------------47 圖 3-18石梯坪空照圖、觀察點位置及觀看畫面--------------------------47 圖 3-19奇美部落空照圖、觀察點位置及觀看畫面-------------------------47 圖 3-20豐濱鄉一帶空照圖、觀察點位置及觀看畫面-----------------------47 圖 3-21山上北回歸線空照圖、觀察點位置及觀看畫面---------------------47 圖 3-22新社梯田空照圖、觀察點位置及觀看畫面-------------------------47 圖 4-1學習者使用Cardboard VR裝置探索阿美族文化與自然科學生態---------54 圖 4-2學習者正在完成阿美族文化與自然科學生態探索學習單---------------54 圖 4-3以投影片介紹阿美族文化與自然科學生態知識----------------------55  

    1.田哲益(2001)。台灣原住民的社會與文化:武陵出版有限公司。
    2.朱則剛(1994)。建構主義知識論與情境認知的迷思--兼論其對認知心理學的意義。教學科技與媒體。
    3.吳正德 (2016)。2016-08-28 那荳蘭部落 豐年祭 - 阿美族甜心舞蹈[影片]。Youtube。https://www.youtube.com/watch?v=OkuzIfDH1Ig
    4.吳百興(2008)。八年級原住民學生在設計導向活動的科學學習:以族群認同、對科學的態度、力學概念與過程技能四面向進行探討。國立臺灣師範大學科學教育研究所。
    5.李岱芳(2001)。情境式學習在氧化還原網站之應用與研究, 靜宜大學應用化學研究所碩士論文。
    6.李泳泰(2007)。實作教學對原住民學生科學學習影響之研究-以「竹槍製作」單元為例。未出版之碩士論文,國立高雄師範大學物理學系,高雄市。
    7.邱琦芳(2009)。阿美族文化基本教材內容分析之研究。未出版之碩士論文,國立花蓮教育大學國民教育研究所,花蓮縣。
    8.孫志強(2015)。STEM課程元素融入阿美族文化之研究。未出版之碩士論文,臺北市立大學科學教育碩士學位學程,臺北市。
    9.徐新逸(1998)。情境教學中教師教學歷程之俗民誌研究。教學科技與終身學習國際學術研討會。國立台灣師範大學。
    10.許瑛玿, 廖桂菁(2003)。情境式網路學習環境互動行為分析:以高中地球科學線上學習為例。師大學報:科學教育類,48(1),93-117。
    11.傅麗玉(1999)。從世界觀探討臺灣原住民中小學科學教育。科學教育學刊,7(1),71-90。
    12.傅麗玉(2004)。誰的科學教育?中小學科學教育的多元文化觀點。課程與教學,7(1),91-108+182。
    13.黃宣衛(1989)。從歲時祭儀看宜灣阿美族傳統社會組織的互補性與階序性。中央研究院民族學研究所集刊,(67),75-108。
    14.黃敏瑄(2022)。探討擴增實境桌遊之螢幕與虛擬介面對使用者認知負荷與互動滿意度之影響。未出版之碩士論文,國立臺北教育大學數位科技設計學系(含玩具與遊戲設計碩士班),台北市。
    15.黃貴潮(1998)。阿美族傳統文化:交通部觀光局東部海岸國家風景區管理處。
    16.黃麗衡(2015)。結合學習風格與不同引導策略情境任務式電子書對學習成效的影響─以數學「一元一次不等式」單元為例。未出版之碩士論文,國立臺灣科技大學數位學習與教育研究所,台北市。
    17.楊家興(1995)。情境教學理論與超媒體學習環境。
    18.蔡秉昆(2011)。3D虛擬實境繪本電子書輔助月亮迷思概念課程學習效益之研究。未出版之碩士論文,國立臺中教育大學數位內容科技學系碩士班,台中市。
    19.蘇文義(2003)。情境式評量中的科學認知與科學應用能力及影響學生科學學習成就的因素。未出版之碩士論文,國立臺灣師範大學物理研究所,台北市。
    20.蘇健倫(2021)。結合多維度鷹架與情境學習機制的歷史街景探索遊戲教學活動的設計與評估。未出版之碩士論文,國立臺灣科技大學應用科技研究所,台北市。
    21.Ai-Lim Lee, E., Wong, K. W., & Fung, C. C. (2010). How does desktop virtual reality enhance learning outcomes? A structural equation modeling approach. Computers & Education, 55(4), 1424-1442.
    doi: https://doi.org/10.1016/j.compedu.2010.06.006
    22.Aikenhead, G. S., & Ogawa, M. (2007). Indigenous knowledge and science revisited. Cultural Studies of Science Education, 2(3), 539-620.
    doi: 10.1007/s11422-007-9067-8
    23.Allen, M. (2007). Designing successful e-Learning: Forget what you know about instructional design and do something interesting: John wiley & sons, Inc.
    24.Allison, D., Wills, B., Bowman, D., Wineman, J., & Hodges, L. F. (1997). The Virtual Reality Gorilla Exhibit. IEEE Computer Graphics and Applications, 17(6), 30-38. doi: 10.1109/38.626967
    25.Andersen, S. A., Mikkelsen, P. T., Konge, L., Cayé-Thomasen, P., & Sørensen, M. S. (2016). Cognitive Load in Mastoidectomy Skills Training: Virtual Reality Simulation and Traditional Dissection Compared. J Surg Educ, 73(1), 45-50. doi: 10.1016/j.jsurg.2015.09.010
    26.Araiza-Alba, P., Keane, T., Matthews, B., Simpson, K., Strugnell, G., Chen, W. S., & Kaufman, J. (2021). The potential of 360-degree virtual reality videos to teach water-safety skills to children. Computers & Education, 163, 104096.
    doi: https://doi.org/10.1016/j.compedu.2020.104096
    27.Armougum, A., Orriols, E., Gaston-Bellegarde, A., Marle, C. J.-L., & Piolino, P. (2019). Virtual reality: A new method to investigate cognitive load during navigation. Journal of Environmental Psychology, 65, 101338.
    doi: https://doi.org/10.1016/j.jenvp.2019.101338
    28.Ausburn, L. J., & Ausburn, F. B. (2004). Desktop Virtual Reality: A Powerful New Technology for Teaching and Research in Industrial Teacher Education. Journal of Industrial Teacher Education, 41, 1-16.
    29.Brelsford, J. W. (1993). Physics Education in a Virtual Environment. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 37(18), 1286-1290. doi: 10.1177/154193129303701818
    30.Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational researcher, 18(1), 32-42.
    31.Bruner, J., & Minds, A. (1986). Possible worlds. MA: Harvard University Press, Cambridge.
    32.Bursztyn, N., Pederson, J. L., Shelton, B. E., Walker, A. E., & Campbell, T. (2015). Utilizing Geo-Referenced Mobile Game Technology for Universally Accessible Virtual Geology Field Trips. International Journal of Education in Mathematics, Science and Technology, 3, 93-100.
    33.Chih Hung, C., Jie Chi, Y., Sarah, S., & Ming Chang, J. (2007). A Desktop Virtual Reality Earth Motion System in Astronomy Education. Journal of Educational Technology & Society, 10(3), 289-304.
    34.Chittaro, L., & Buttussi, F. (2015). Assessing Knowledge Retention of an Immersive Serious Game vs. a Traditional Education Method in Aviation Safety. IEEE Transactions on Visualization and Computer Graphics, 21(4), 529-538.
    doi: 10.1109/TVCG.2015.2391853
    35.Cobern, W. W. (1996). Constructivism and non‐western science education research. International Journal of Science Education, 18(3), 295-310.
    doi: 10.1080/0950069960180303
    36.Collins, A. (1990). The role of computer technology in restructuring schools. Restructuring for learning with technology, 1990, 31-46.
    37.Dan, A., & Reiner, M. (2017). EEG-based cognitive load of processing events in 3D virtual worlds is lower than processing events in 2D displays. Int J Psychophysiol, 122, 75-84.
    doi: 10.1016/j.ijpsycho.2016.08.013
    38.Dunlop, J. (2000). How Children Observe the Universe. Publications of the Astronomical Society of Australia, 17(2), 194-206.
    doi: 10.1071/AS00194
    39.Gonen, A., Lev-Ari, L., Sharon, D., & Amzalag, M. (2016). Situated learning: The feasibility of an experimental learning of information technology for academic nursing students. Cogent Education, 3(1), 1154260.
    doi: 10.1080/2331186X.2016.1154260
    40.Grabowski, A., & Jankowski, J. (2015). Virtual Reality-based pilot training for underground coal miners. Safety Science, 72, 310-314.
    doi: https://doi.org/10.1016/j.ssci.2014.09.017
    41.Hokanson, G., Borchert, O., Slator, B. M., Terpstra, J., Clark, J. T., Daniels, L. M., . . . Williams, L. (2008, 1-5 July 2008). Studying Native American Culture in an Immersive Virtual Environment. Paper presented at the 2008 Eighth IEEE International Conference on Advanced Learning Technologies.
    42.Hollingworth, R. W., & McLoughlin, C. (2001). Developing science students’ metacognitive problem solving skills online. Australasian Journal of Educational Technology, 17(1).
    doi: 10.14742/ajet.1772
    43.Huang, S.-Y., Tarng, W., & Ou, K.-L. (2023). Effectiveness of AR Board Game on Computational Thinking and Programming Skills for Elementary School Students. Systems, 11(1), 25.
    44.Hwang, G.-J., Yang, L.-H., & Wang, S.-Y. (2013). A concept map-embedded educational computer game for improving students' learning performance in natural science courses. Computers & Education, 69, 121-130.
    doi: https://doi.org/10.1016/j.compedu.2013.07.008
    45.Hwang, M.-Y., Hong, J.-C., Cheng, H.-Y., Peng, Y.-C., & Wu, N.-C. (2013). Gender differences in cognitive load and competition anxiety affect 6th grade students' attitude toward playing and intention to play at a sequential or synchronous game. Computers & Education, 60(1), 254-263.
    doi: https://doi.org/10.1016/j.compedu.2012.06.014
    46.Jerald, J. (2015). The VR Book: Human-Centered Design for Virtual Reality: Association for Computing Machinery and Morgan & Claypool.
    47.Johnson, A., Moher, T., Ohlsson, S., & Gillingham, M. (1999). The Round Earth Project-collaborative VR for conceptual learning. IEEE Computer Graphics and Applications, 19(6), 60-69.
    doi: 10.1109/38.799741
    48.Kalyuga, S. (2011). Cognitive Load Theory: How Many Types of Load Does It Really Need? Educational Psychology Review, 23(1), 1-19.
    doi: 10.1007/s10648-010-9150-7
    49.Karkar, A., Salahuddin, T., Almaadeed, N., Aljaam, J. M., & Halabi, O. (2018, 21-22 Nov. 2018). A Virtual Reality Nutrition Awareness Learning System for Children. Paper presented at the 2018 IEEE Conference on e-Learning, e-Management and e-Services (IC3e).
    50.Lave, J., & Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation. Cambridge: Cambridge University Press.
    51.Lee, H., Yen, C. F., & Aikenhead, G. S. (2012). Indigenous Elementary Students' Science Instruction in Taiwan: Indigenous Knowledge and Western Science. Research in Science Education, 42(6), 1183-1199.
    doi: 10.1007/s11165-011-9240-7
    52.Li, C., Yeom, S., Dermoudy, J., & Salas, K. d. (2022, 1-4 July 2022). Cognitive Load Measurement in the Impact of VR Intervention in Learning. Paper presented at the 2022 International Conference on Advanced Learning Technologies (ICALT).
    53.Locurcio, L. L. (2022). Dental education in the metaverse. British Dental Journal, 232(4), 191-191. https://doi.org/10.1038/s41415-022-3990-7
    54.Ma, F. t., & Yeh, M. Y. (2015, 24-26 Aug. 2015). The development of the situated learning materials in the Nursing and Communication course. Paper presented at the 2015 8th International Conference on Ubi-Media Computing (UMEDIA).
    55.McLellan, H. (1993). Evaluation in a Situated Learning Environment. Educational Technology, 33(3), 39-45.
    56.McLellan, H. (1996). Situated Learning Perspectives: Educational Technology Publications.
    57.Muhanna, M. A. (2015). Virtual reality and the CAVE: Taxonomy, interaction challenges and research directions. Journal of King Saud University - Computer and Information Sciences, 27(3), 344-361.
    doi: https://doi.org/10.1016/j.jksuci.2014.03.023
    58.Ogawa, M. (1995). Science education in a multiscience perspective. Science education, 79(5), 583-593.
    59.Ou, K.-L., Chu, S.-T., & Tarng, W. (2021). Development of a Virtual Wetland Ecological System Using VR 360° Panoramic Technology for Environmental Education. Land, 10(8), 829.
    60.Ou, K.-L., Liu, Y.-H., & Tarng, W. (2021). Development of a Virtual Ecological Environment for Learning the Taipei Tree Frog. Sustainability, 13(11), 5911.
    61.Ou, K. L., Liu, Y., & Tarng, W. (2021). Development of a Virtual Ecological Environment for Learning the Taipei Tree Frog. Sustainability, 13, 5911.
    62.Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive Load Theory and Instructional Design: Recent Developments. Educational Psychologist, 38(1), 1-4.
    doi: 10.1207/S15326985EP3801_1
    63.Pan, Z., Cheok, A. D., Yang, H., Zhu, J., & Shi, J. (2006). Virtual reality and mixed reality for virtual learning environments. Computers & Graphics, 30(1), 20-28.
    doi: https://doi.org/10.1016/j.cag.2005.10.004
    64.Peng, L. H., & Chung, L. C. (2017, 13-17 May 2017). A study of forming Taiwanese Aborigines' totem and conversional products. Paper presented at the 2017 International Conference on Applied System Innovation (ICASI).
    65.Shaw, R. (1982). Ecological psychology: The consequence of a commitment to realism. Cognition and the symbolic processes.
    66.Snively, G., & Corsiglia, J. (2001). Discovering indigenous science: Implications for science education. Science education, 85(1), 6-34.
    67.Sun, K.-T., Lin, C.-L., & Wang, S.-M. (2010). A 3-D VIRTUAL REALITY MODEL OF THE SUN AND THE MOON FOR E-LEARNING AT ELEMENTARY SCHOOLS. International Journal of Science and Mathematics Education, 8(4), 689-710.
    doi: 10.1007/s10763-009-9181-z
    68.Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2), 257-285.
    69.Tarng, W., Liu, C.-L., Lee, C.-Y., Lin, C.-M., & Lu, Y.-C. (2019). A virtual laboratory for learning fullerene production and nanostructure analysis. Computer Applications in Engineering Education, 27(2), 472-484.
    doi: https://doi.org/10.1002/cae.22089
    70.Tarng, W., Pan, I.-C., & Ou, K.-L. (2022). Effectiveness of Virtual Reality on Attention Training for Elementary School Students. Systems, 10(4), 104.
    71.Tai, Y., Yang, Y., & Wang, X. (2022, 18-21 Aug. 2022). Development of VR Motion Sickness Test Platform Based on UE. 2022 International Conference on Culture-Oriented Science and Technology (CoST),
    72.Teo, T., Norman, M., Lee, G. A., Billinghurst, M., & Adcock, M. (2020). Exploring interaction techniques for 360 panoramas inside a 3D reconstructed scene for mixed reality remote collaboration. Journal on Multimodal User Interfaces, 14(4), 373-385.
    doi: 10.1007/s12193-020-00343-x
    73.Urech, A., Krieger, T., Chesham, A., Mast, F. W., & Berger, T. (2015). Virtual Reality-Based Attention Bias Modification Training for Social Anxiety: A Feasibility and Proof of Concept Study. Front Psychiatry, 6, 154.
    doi: 10.3389/fpsyt.2015.00154
    74.Vygotsky, L. S., & Cole, M. (1978). Mind in society: Development of higher psychological processesHarvard university press.
    75.Wang, L. C., & Chen, M. P. (2010). The effects of game strategy and preference‐matching on flow experience and programming performance in game‐based learning. Innovations in Education and Teaching International, 47(1), 39-52. doi: 10.1080/14703290903525838
    76.Wang, Y., Liu, W., Meng, X., Fu, H., Zhang, D., Kang, Y., . . . Jiang, G. (2016). Development of an immersive virtual reality head-mounted display with high performance. Applied Optics, 55(25), 6969-6977. doi: 10.1364/AO.55.006969
    77.Wu, W.-L., Hsu, Y., Yang, Q.-F., & Chen, J.-J. (2021). A Spherical Video-Based Immersive Virtual Reality Learning System to Support Landscape Architecture Students’ Learning Performance during the COVID-19 Era. Land, 10(6), 561.
    78.Young, M. F. (1993). Instructional design for situated learning. Educational Technology Research and Development, 41(1), 43-58.
    doi: 10.1007/BF02297091

    QR CODE