簡易檢索 / 詳目顯示

研究生: 何修羽
He, Hsiou-Yu.
論文名稱: 柔性電子電路金屬導線之電性及拉伸機械行為分析與設計
Analysis and Design of Electrical and Tensile Mechanical Characteristics of Metal Interconnects for Stretchable Electronic Circuits
指導教授: 陳文華
Chen, Wen-Hwa
鄭仙志
Cheng, Hsien-Chie
口試委員: 李昌駿
Lee, Chang-Chun
蔡宏營
Tsai, Hung-Yin
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 99
中文關鍵詞: 金屬導線線路幾何拉伸機械行為有限元素分析參數化分析
外文關鍵詞: Metal interconnect, Routing geometry, Tensile mechanical behavior, Finite element analysis, Parametric analysis
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 柔性電極為可穿戴式裝置之重要組件,其係由金屬導線印製於超彈性基板上並連接各式感測器所構成。柔性電極之設計除了超彈性基板外,基板上之金屬導線路徑設計亦為一大關鍵,與可穿戴式裝置之可撓性及可拉伸性息息相關。
    本論文旨在探討一柔性電極中,不同材料金屬導線在不同幾何設計下之拉伸力學行為以及破壞機制。現今之柔性電極大多由超彈性基板/銅線構成,因銅線可印製上之超彈性基板總類較少,且製程較繁複,致侷限其發展。本論文擬探討之超彈性基板/銀/銅及超彈性基板/銀結構,則係先由網版印刷(Screen Printing)印製出銀種子層,再電鍍出銅導線,具有可大量生產、製程簡單等優勢,故本論文將以超彈性基板/銀/銅及超彈性基板/銀結構為基礎,探討影響金屬導線拉伸機械行為(應力、可拉伸度)之重要幾何與材料因子。
    首先,本論文選擇一擁有高扭曲和高拉伸等特性之超彈性材料熱塑性聚氨酯(Thermoplastic Urethane, TPU)作為基板之材料,並於基板上印製金屬導線銀/銅與銀。對可拉伸熱塑性聚氨酯基板、銀及銅試片分以微拉力測試儀、壓痕量測試驗儀,進行材料機械性質之量測。因網版印刷之銀電阻率較高,本論文將同時分析熱塑性聚氨酯基板/銀試片拉伸後之電阻變化,以兼顧熱塑性聚氨酯基板/銀之拉伸性與電性表現。
    接著建立熱塑性聚氨酯基板/銀/銅及熱塑性聚氨酯基板/銀電子電路元件之有限元素分析模型,探討不同幾何及材料因子下之金屬導線線路的非線性拉伸機械行為及破壞機制,並比較熱塑性聚氨酯基板/銀/銅及熱塑性聚氨酯基板/銀電子電路元件之優缺點。
    最後,在同時考慮電性表現及可拉伸性下,經參數化分析及田口氏實驗設計後,本論文設計出一方形導線路徑,在週期數為12、線寬為0.1mm及狹縫寬比值為0.5時,於15%拉伸量下,最大塑性應變僅有1.7%,電阻變化率遠小於10%且電阻為6.7歐姆。本論文之成果可供設計導線路徑之參考,使柔性電極擁有可高拉伸及高機械/電性可靠度。


    Stretchable electronic circuit is an important component of a wearable device. It consists of hyperelastic substrates and metal interconnects connecting sensors. In addition to the hyperelastic substrate, the design of metal interconnects paths on the substrate is also a key issue, which is closely related to the flexibility and stretchability of wearable devices.
    The purpose of this paper is to investigate the tensile mechanical behavior and failure mechanism of metal interconnects of different materials in stretchable electronic circuits. Most of today's stretchable electronic circuits are composed of hyperelastic substrates/copper interconnects. Because of the small number of hyperelastic substrates that copper interconnects can be printed on, and the complicated process, the development is limited. In this paper, the hyperelastic substrate/silver/copper and hyperelastic substrate/silver structure are discussed. Because the silver seed layer is printed by Screen Printing, and the copper interconnect is electroplated, with the advantages of mass production, simple process, etc, this paper will use the hyperelastic substrate / silver / copper and hyperelastic substrate / silver structure to explore the important geometric and material factors affecting the tensile mechanical behavior (stress, stretchability) of metal interconnects.
    First of all, Thermoplastic Urethane (TPU) was selected as the material of a substrate, and silver/copper and silver interconnects were printed on the substrate. The mechanical properties of the Thermoplastic Urethane, silver and copper were measured. Due to the high resistivity of screen printing silver, electrical performance and stretchability will be considered.
    At last, after parametric analysis and taguchi experiment design, this paper designed a square metal interconnects path. When the cycle is 12, the line width is 0.1mm, and a slit width ratio of 0.5, the maximum plastic strain is only 1.7% at 15% stretching, the resistivity is far less than 10% and the resistance is 6.7 ohm. The results of this paper can be used as a reference for the design of metal interconnects paths to have high mechanical and electrical reliability.

    摘要 I ABSTRACT III 目錄 V 表目錄 VII 圖目錄 IX 第一章、 導論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目標 5 第二章、 熱塑性聚氨酯基板/銀/銅電子元件製程 7 2.1 網版印刷 8 2.2 濺鍍銅 8 2.3 電鍍銅 9 2.4 粗化處理 9 第三章、 理論分析 11 3.1 有限單元分析模型 11 3.2 MOONEY-RIVLIN應力-應變關係式 11 3.3 破壞準則 14 3.4 沙漏效應 17 第四章、 實驗量測 18 4.1 材料機械性質量測 18 4.2 電阻量測 21 第五章、 結果與討論 25 5.1 過往文獻結構比較 25 5.2 過往文獻幾何路徑比較 26 5.3 熱塑性聚氨酯基板/銀/銅之幾何參數影響 27 5.4 熱塑性聚氨酯基板/銀/銅之材料參數影響 33 5.5 熱塑性聚氨酯基板/銀之幾何參數影響 36 第六章、 結論與未來展望 46 參考文獻 49 附表 53 附圖 65

    1.Beer, F. P., Johnston, E. R., DeWolf, J. T., & Mazurek, D. F. (1992). Mechanics of materials. In SI Units, McGraw-Hill, UK, App.
    2.Cheng, Y. T. & Cheng, C. M. (1998). Relationships between Hardness, Elastic Modulus, and the Work of Indentation. Applied physics letters, vol. 73, No. 5, pp. 614-616.
    3.Chuang, H., Chang, V. C., Chen, Y. S., & Hou, S. Y. (2005). U.S. Patent No. 6,854,100. Washington, DC: U.S. Patent and Trademark Office.
    4.Coffin, L. F. (1973). Fatigue at high temperature. In Fatigue at elevated temperatures. ASTM International.
    5. Coulomb, C. A. (1776). Essai sur une application des regles des maximis et minimis a quelquels problemesde statique relatifs, a la architecture. Mem. Acad. Roy. Div. Sav., vol. 7, pp. 343-387.
    6.Gonzalez, M., Axisa, F., Bulcke, M. V., Brosteaux, D., Vandevelde, B., & Vanfleteren, J. (2008). Design of metal interconnects for stretchable electronic circuits. Microelectronics Reliability, vol.48, no.6, pp. 825-832.
    7.Gonzalez, M., Axisa, F., Bossuyt, F., Hsu, Y. Y., Vandevelde, B., & Vanfleteren, J. (2009). Design and performance of metal conductors for stretchable electronic circuits. Circuit World, vol.35, no. 1, pp. 22-29.
    8.Harper, J. M. E., Cabral Jr, C., Andricacos, P. C., Gignac, L., Noyan, I. C., Rodbell, K. P., & Hu, C. K. (1999). Mechanisms for microstructure evolution in electroplated copper thin films near room temperature. Journal of applied physics, vol. 86, no. 5, pp.2516-2525.
    9.Hosford, W. F. (1972). A generalized isotropic yield criterion. Journal of Applied Mechanics, vol. 39, no.2 , pp.607-609.
    10.Hsu, Y. Y., Dimcic, B., Gonzalez, M., Bossuyt, F., Vanfleteren, J., & De Wolf, I. (2010). Reliability assessment of stretchable interconnects. In Microsystems Packaging Assembly and Circuits Technology Conference 5, pp. 1-4.
    11.Hsu, Y. Y., Gonzalez, M., Bossuyt, F., Vanfleteren, J., & De Wolf, I. (2011). Polyimide-enhanced stretchable interconnects: design, fabrication, and characterization. Transactions on Electron Devices, pp. 2680-2688.
    12.Hsu, Y. Y., Hoffman, J., Ghaffari, R., Ives, B., Wei, P., Klinker, L., & Dowling, K. (2012). Epidermal electronics: Skin sweat patch. In Microsystems, Packaging, Assembly and Circuits Technology Conference 7, pp.228-231.
    13.Hsu, Y. Y., Lucas, K., Davis, D., Ghaffari, R., Elolampi, B., Dalal, M., & Dowling, K. (2013). Design for reliability of multi-layer thin film stretchable interconnects. In Electronic Components and Technology Conference (ECTC) 63, pp. 623-628.
    14.Hsu, Y. Y., Papakyrikos, C., Raj, M., Dalal, M., Wei, P., Wang, X., & Ghaffari, R. (2014). Archipelago platform for skin-mounted wearable and stretchable electronics. In Electronic Components and Technology Conference (ECTC) 64, pp. 145-150.
    15.Isobe, M., & Okumura, K. (2016). Initial rigid response and softening transition of highly stretchable kirigami sheet materials. Scientific reports, vol.6, no.24758.
    16.James, A. M., & Lord, M. P. (1992). Macmillan's chemical and physical data. London: Macmillan.
    17.Kim, B., Lee, S. B., Lee, J., Cho, S., Park, H., Yeom, S., & Park, S. H. (2012). A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber. International Journal of Precision Engineering and Manufacturing, vol. 13, no. 5, pp.759-764.
    18.Kumar, N., & Rao, N. N. (2016). Hyperelastic Mooney-Rivlin Model: Determination and Physical Interpretation of Material Constants, vol. 6, No. 1, pp. 43-46
    19.Mooney, M.A. (1940). Theory of Large Elastic Deformation. Journal of Applied Physics, vol. 11, pp.582-592.
    20.Ohm, G. S. (1891). The galvanic Circuit investigated mathematically, D. Van Nostrand Company.
    21.Philips’Gloeilampenfabrieken, O. (1958). A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep, vol. 13, no. 1, pp.1-9.
    22.Pudas, M., Hagberg, J., & Leppävuori, S. (2002). The absorption ink transfer mechanism of gravure offset printing for electronic circuitry. IEEE transactions on electronics packaging manufacturing, vol. 25, no. 4, pp. 335-343.
    23.Shyu, T. C., Damasceno, P. F., Dodd, P. M., Lamoureux, A., Xu, L., Shlian, M., ... & Kotov, N. A. (2015). A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nature materials, vol.14, no.8, pp. 785.
    24.Tresca, H. (1864). Mémoire sur l'écoulement des corps solides soumis à de fortes pressions. C. R. Acad. Sci. Paris, vol. 59, p. 754.
    25.von Mises, R. (1913). Mechanik der Festen Korper im plastisch deformablen Zustand. Göttin. Nachr. Math. Phys., vol. 1, pp. 582-592.
    26.Wong, F. S., & Shield, R. T. (1969). Large plane deformations of thin elastic sheets of neo-Hookean material. Zeitschrift für angewandte Mathematik und Physik ZAMP, vol. 20, no. 2, pp.176-199.
    27.Yin, W., Lee, D. H., Choi, J., Park, C., & Cho, S. M. (2008). Screen printing of silver nanoparticle suspension for metal interconnects. Korean Journal of Chemical Engineering, vol. 25, no. 6, pp.1358-1361.
    28.Zhang, S., Sakane, M., Nagasawa, T., & Kobayashi, K. (2011). Mechanical properties of copper thin films used in electronic devices. Procedia Engineering, vol. 10, pp.1497-1502.
    29.吳崇銘、王凱駿, ”精密凹版轉印技術與應用”,機械工業雜誌,第 354 期,頁數 58-66,2012 。
    30.李輝煌, ”田口方法品質設計的原理與實務”, 高立圖書有限公司。
    31.胡軒齊,一修正型Dao材料分析模型及其於介金屬化合物彈-塑性性質之探討, 國立清華大學動力機械系碩士論文,2015。
    32.陳忠輝、黃慶隆, ”印刷電子產業之趨勢與展望”印刷科技,第27卷,第4期,頁數64-92,2011。

    QR CODE