研究生: |
謝瑋哲 Hsieh, Wei-Che |
---|---|
論文名稱: |
利用密度泛函理論研究鉛原子在銅(110)金屬面上之交換作用 Interaction of Pb atoms on Cu(110) metal surface: A DFT study |
指導教授: |
李志浩
Lee, Chih-Hao 陳馨怡 Chen, Hsin-Yi |
口試委員: |
湯茂竹
Tang, Mau-Tsu 邢正蓉 Hsing, Cheng-Rong |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 密度泛函理論 、銅表面 、鉛原子 、取代 、吸附 |
外文關鍵詞: | Density Functional Theory, Cu surface, Pb atom, adsorption, substitution |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鉛和銅之間的晶格不匹配約為36.7%,為何在如此大的不匹配度之下,實驗仍然發現到鉛原子會取代表層的銅原子?而由STM實驗所觀測到在覆蓋率高於0.75後,會有部份鉛原子會取代表層銅原子。為了更進一步探討此現象,本論文利用密度泛函理論來計算不同覆蓋率的鉛原子在銅(110)面上之穩定結構。藉由提出鉛取代及吸附模型來進行比較。因為此二系統總原子數目不一,於此藉由計算形成能量來驗證實驗所推斷的穩定結構。
在計算結果中,我們可以得出覆蓋率為0.8時,為p(5×1)的結構,部分鉛原子會取代表層的銅原子的形成能量相較於鉛吸附的模型低0.3 eV,而覆蓋率在0.75(結構為p(12×1))以及0.778(結構為p(9×1))時,也會得到鉛原子取代表層銅原子會有較低的形成能量,相較於吸附模型分別低0.1 eV和0.2 eV,意即鉛取代較容易發生。另外可以發現在形成能量的差值會隨著覆蓋率的增加而增加。
在觀察電子密度分佈時,可以觀察到鉛原子的電子幾乎沒有和銅原子有作用。另外在觀察鍵長時發現,三種覆蓋率鉛原子和銅原子之間的鍵長都很相近,而鉛原子之間的鍵長會隨覆蓋率增加而減少。而取代型鉛原子和鄰近的鉛原子距離增加,使得系統趨於穩定。
關鍵字:密度泛函理論、銅表面、鉛原子、取代、吸附
Lattice mismatch between lead and copper is approximatively 36%, but why does the STM data show that lead atoms substitute for copper atoms, instead of adsorption on the surface. In order to answer this question, Density Functional Theory was used in this thesis to verify the stable structure of lead on copper (110) surface in different coverage by comparing lead substitution and lead adsorption models. Since the total the number of atoms in both lead substitution and lead adsorption models are different we use formation energy to determine the stability of the two model.
The simulation results show that the coverage 0.8, p(5×1) unit cell, of substitution case is the most stable one among all of models; the formation energy of the Pb substitution models is 0.03 eV lower than the Pb adsorption model. The same trend is observed in the cases of the coverage equal to 0.75, p(12×1) unit cell, and 0.778,p(9×1) unit cell: the Pb substitution for Cu is more stable than the Pb adsorption case. In addition, with the increase of the Pb coverage, we have found the difference of formation energy between the Pb substitution and adsorption models increases slightly. We also examine their charge density and the outcomes disclose that there is no charge transfer between the lead and copper atoms. Concerning their bond length variation, the bond distances between Cu and Pb is almost the same under the three coverage models; the Pb-Pb bond length decreases with the increase of Pb coverage on Cu (110) surface. We found that the Pb-Pb bond length of substitution model is larger than the Pb-Pb bond length of adsorption model.
Keyword: Density Functional Theory, Cu surface, Pb atom, adsorption, substitution
1. Henrion., J. and G.E. Rhead., "LEED studies of the first stages of deposition and melting of lead on low index faces of copper." Surface Science. 29, 1972, p. 20-36.
2. Marra, W.C., P.H. Fuoss, and P.E. Eisenberger, "X-Ray Diffraction Studies: Melting of Pb Monolayers on Cu(110) Surfaces." Physical Review Letters. 49, 1982, p. 1169-1172.
3. Brennan, S., P.H. Fuoss, and P. Eisenberger, "X-ray crystallographic studies of Pb monolayers on Cu(110) surfaces." Physical Review B. 33, 1986, p. 3678-3683.
4. Lee, C.H., et al., "Kinetics of Domain Wall Pinning in an Incommensurate Pb Overlayer on a Cu(110) Surface " Applied Physics A. 51, 1990, p. 191-193.
5. Liang, K.S., et al., "Domain-wall pinning in uniaxial phases of Pb adlayers on a Cu(110) surface." Physical Review Letters. 65, 1990, p. 3025-3028.
6. Lee, C.H., K.S. Liang, and K.L. D’Amico, "Surface X-ray Diffraction studies of the Uniaxial Structure of the Pb Adlayers on a Cu(110) Surface." (unpublished work)
7. Beauvais., C.d., et al., "Commensurate phases and phase transitions in quasi-compact submonolayers of Pb/Cu(110)." Surface Science. 272, 1992, p. 73-80.
8. de Beauvais, C., et al., "Thermal-energy atom-scattering study of Pb submonolayers on Cu(110)." Physical Review B. 44, 1991, p. 4024-4027.
9. Nagl, C., et al., "p(n×1) superstructures of Pb on Cu(110)." Physical Review B. 52, 1995, p. 16796-16802.
10. Nagl, C., M. Schmid, and P. Varga, "Inverse corrugation and corrugation enhancement of Pb superstructures on Cu(111) and (110)." Surface Science. 369, 1996, p. 159-168.
11. Nix, R.M. An Introduction to Surface Chemistry. Available from: http://www.chem.qmul.ac.uk/surfaces/scc/.
12. Low-energy electron diffraction. Available from: http://www.chem.qmul.ac.uk/surfaces/scc/scat6_2.htm.
13. 6.2 Low Energy Electron Diffraction ( LEED ). Available from: https://en.wikipedia.org/wiki/Low-energy_electron_diffraction#/media/File:LEED_Experimental_Diagram.jpg.
14. Robinson, I.K. surface-specific methods. 2000; Available from: http://www.ucl.ac.uk/~ucapikr/SXRD_MMR_Chapter.pdf.
15. Grazing incidence diffraction. Available from: https://en.wikipedia.org/wiki/Grazing_incidence_diffraction.
16. Helium atom scattering. Available from: https://en.wikipedia.org/wiki/Helium_atom_scattering.
17. The Scanning Tunneling Microscope. Available from: http://www.iap.tuwien.ac.at/www/surface/stm_gallery/stm_schematic.
18. 7.6 Scanning Probe Microscopy ( STM / AFM ). Available from: http://www.chem.qmul.ac.uk/surfaces/scc/.
19. Chen, H.-Y.T., "Hydrogenation Reaction Catalysed by Organometallic Complexs." University College London Ph D 2011
20. Hands-on tutorial course on VASP. Available from: https://www.vasp.at/vasp-workshop/.
21. Fermi, E., "Un metodo statistico per la determinazione di alcune priorietà dell'atome." Rend. Accad. Naz. Lincei. 6, 1927, p. 602-607.
22. Thomas, L., "The calculation of atomic fields." Proceedings of the Cambridge Philosophical Society. 23, 1927, p. 542-548.
23. Hohenberg, P. and W. Kohn, "Inhomogeneous Electron Gas." Physical Review. 136, 1964, p. B864-B871.
24. Born-Oppenheimer approximation. Available from: https://en.wikipedia.org/wiki/Born%E2%80%93Oppenheimer_approximation.
25. M., B. and O. R., "Zur Quantentheorie der Molekeln." Annalen der Physik. 389, 1927, p. 457–484.
26. Density functional theory. Available from: https://en.wikipedia.org/wiki/Density_functional_theory.
27. Kohn, W. and L.J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects." Physical Review. 140, 1965, p. A1133-A1138.
28. Kohn–Sham equation. Available from: https://en.wikipedia.org/wiki/Kohn%E2%80%93Sham_equations.
29. Local-density approximation. Available from: https://en.wikipedia.org/wiki/Local-density_approximation.
30. Perdew, J.P. and A. Zunger, "Self-interaction correction to density-functional approximations for many-electron systems." Physical Review B. 23, 1981, p. 5048-5079.
31. Cole, L.A. and J.P. Perdew, "Calculated electron affinities of the elements." Physical Review A. 25, 1982, p. 1265-1271.
32. Gell-Mann, M. and K.A. Brueckner, "Correlation Energy of an Electron Gas at High Density." Physical Review. 106, 1957, p. 364-368.
33. Dirac, P., "Note on exchange phenomena in the Thomas atom." Proceedings of the Cambridge Philosophical Society. 26, 1930, p. 376-385.
34. Parr, R.G. and W. Yang, "Density-Functional Theory of Atoms and Molecules." 1994.
35. Ceperley, D.M. and B.J. Alder, "Ground State of the Electron Gas by a Stochastic Method." Physical Review Letters. 45, 1980, p. 566-569.
36. Perdew, J.P., K. Burke, and Y. Wang, "Generalized gradient approximation for the exchange-correlation hole of a many-electron system." Physical Review B. 54, 1996, p. 16533-16539.
37. Perdew, J.P., "Density-functional approximation for the correlation energy of the inhomogeneous electron gas." Physical Review B. 33, 1986, p. 8822-8824.
38. Perdew, J.P. and Y. Wang, "Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation." Physical Review B. 33, 1986, p. 8800-8802.
39. Becke, A.D., "Density-functional exchange-energy approximation with correct asymptotic behavior." Physical Review A. 38, 1988, p. 3098-3100.
40. Langreth, D.C. and M.J. Mehl, "Beyond the local-density approximation in calculations of ground-state electronic properties." Physical Review B. 28, 1983, p. 1809-1834.
41. Perdew, J.P., et al., "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation." Physical Review B. 46, 1992, p. 6671-6687.
42. Perdew, J.P., K. Burke, and M. Ermzerhof, "Generalized Gradient Approximation Made Simple." Physical Review Letters. 77, 1996, p. 3865-3868.
43. Pseudopotential. Available from: https://en.wikipedia.org/wiki/Pseudopotential.
44. Potential energy surface. Available from: https://en.wikipedia.org/wiki/Potential_energy_surface.
45. Hessian matrix. Available from: https://en.wikipedia.org/wiki/Hessian_matrix.
46. VASP the GUIDE. Available from: http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html.