簡易檢索 / 詳目顯示

研究生: 耿文駿
Keng, Wen-Chun
論文名稱: 應用矽化鍺通道於電荷陷阱式快閃記憶體元件之電特性研究
Application of SiGe Buried Channel on Electrical Characteristics of Charge-trapping Flash Memory Devices
指導教授: 張廖貴術
Chang-Liao, Kuei-Shu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 126
中文關鍵詞: 矽化鍺
外文關鍵詞: SiGe
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於浮動式閘極快閃記憶體無法滿足元件微縮發展的趨勢,因此利用電荷陷阱式快閃記憶體式取代浮動式閘極結構元件是未來發展的趨勢。然而傳統SONOS元件以氮化矽做為電荷儲存層的結構,在發展到次微米以下時就無法再以降低穿隧氧化層厚度的方式來提升元件操作效率,因此便引進了高介電材料來取代傳統ONO結構以提升元件操作機制。而在通道介面處磊晶一層矽化鍺,藉由能帶工程提升操作載子的能量,希望藉此材料的應用達到較高的元件操作效率。
    本論文的研究方向主要分為下列三項:
    (1) 藉由改變矽化鍺通道的鍺含量,來調變矽化鍺通道介面處的能隙,改變穿隧載子的穿隧能量,來比較不同條件對於元件操作效率上的改善。
    (2) 藉由改變矽化鍺通道的厚度,以及堆疊方式,來調變矽化鍺通道介面處的穿隧範圍以及對於單晶矽覆蓋層的應力問題,來比較不同條件對於元件操作效率上有什麼影響。
    (3) 改變矽化鍺通道上方的單晶矽覆蓋層厚度,藉此改善矽化鍺通道與穿隧氧化層之間的介面特性,觀察用此方式對於元件電性上有改善與影響。
    而經由實驗結果發現,引進矽化鍺通道的記憶體元件,相較於傳統矽基板在操作效率上有明顯的提升,並發現在固定單晶矽覆蓋層厚度前提下,鍺含量越低,以及矽化鍺通道厚度越薄,元件操作效率會越來越好,而改變單晶矽覆蓋層厚度以求改進介面特性部份,隨著單晶矽覆蓋層厚度增加,元件操作效率也會有隨之變好的趨勢。


    摘要…………………………………………………………………………………..i 致謝………………………………..………………………………………….……..ii 目錄 ………………………………….…………………………………….………iv 圖目錄……………………………………………………...……………….……..vii 表目錄 …………………………………………….……………………….…..…xii 第一章 序論………………………………….……………………………………1 1.1 前言…………………………………………………………..……………1 1.2 快閃記憶體面臨問題……………………………………………………1 1.3 電荷陷阱式快閃記憶體的結構及其優缺點……………………….…2 1.4 研究目的…………………………………………………………………4 1.5 各章摘要………………………………………………………………….6 第二章 快閃記憶體元件操作方法 ………………………………….……….13 2.1 寫入與擦拭方法…………………………………………….……….…13 2.1.1 CHEI通道熱電子注入寫入……………………..……………13 2.1.2 CHISEL初始通道載子引發二次電子注入寫入…………13 2.1.3 BBHE帶對帶穿隧引發熱電子寫入…………………………14 2.1.4 FN穿隧寫入 ………………………………………..…………15 2.1.5 FN穿隧抹除 ……………………………………………..……16 2.2 耐力………………………………………………………………………16 2.3 干擾………………………………………………………………………17 2.4 電荷保持………………………………………………………………...18 第三章 實驗規劃及元件製程……………………………………………….…30 3.1 實驗規畫………………………………………………………………30 3.2 電容元件製程……………………………………………..……………31 3.2.1 電容前段製程…………………………………………………31 3.2.2 矽化鍺通道磊晶製程……………………….………………31 3.2.3 成長穿隧氧化層………………………………………………32 3.2.4 沉積電荷儲存層以及阻擋層……………………..…………32 3.3.5 電容後段製程…………………………………………………33 第四章 矽化鍺通道中調變不同鍺含量對電荷陷阱式快閃記憶體特性的 影響……………………………………….………………………….…39 4.1 研究背景與目的……………………………………………………..…39 4.2 實驗規劃及製程………………………………………………………40 4.3實驗結果與討論…………………………………………………………41 4.3.1 矽化鍺通道對於不同鍺含量的效應…………………...…..41 4.3.2 純鍺通道的效應………………………………………………44 4.4 結論………………………………………………………………………47 第五章 矽化鍺通道中調變不同矽化鍺通道厚度對電荷陷阱式快閃記憶 體特性的影響……………………………………..……………………67 5.1 研究背景與目的…………………………………………………..……67 5.2 實驗規劃及製程……………………………………………………..…68 5.3 實驗結果與討論………………………………………………..………69 5.3.1不同矽化鍺通道厚度的效應…………………………………69 5.3.2堆疊式矽化鍺通道的效應……………………………………72 5.4 結論………………………………………………………………………74 第六章 矽化鍺通道中調變不同單晶矽覆蓋層厚度對電荷陷阱式快閃記 憶體特性的影響………………………………………………..……89 6.1 研究背景與目的………………………………………………………89 6.2 實驗規劃及製程……………………………………………………..…90 6.3 實驗結果與討論………………………………………………………91 6.3.1對於Ge11% 200□的通道不同單晶矽覆蓋層厚度的效應..91 6.3.2對於Ge30% 400□的通道不同單晶矽覆蓋層厚度的效應..94 6.3.3對於Ge30% 600□的通道不同單晶矽覆蓋層厚度的效應..96 6.4 結論………………………………………………………………………98 第七章 結論與建議……………………………………………………………120 7.1 結論………………………………………………………………….…120 7.2 建議…………………………………………………………………….121 參考文獻……………………………………………………………………….…122

    [1] Min She, “Semiconductor Flash Memory Scaling”, 2003.
    [2] Marvin H. White, et al., ”On the Go with SONOS”, IEEE Circuit &
    Device, JULY 2000, p22.
    [3] Marvin H. White, et al., “A low voltage SONOS nonvolatile
    semiconductor memory technology”, IEEE Transactions on Components,
    Packaging, and Manufacturing Technology, Vol.20, No.2, JUNE 1997,
    p190.
    [4] Jiankang Bu, et al., “Retention reliability enhanced SONOS NVSM with
    scaled programming voltage”, IEEE Aerospace Conference paper, Vol.5
    2001, p5-2383.
    [5] K.Tamer San, et al., “Effects of erase source bias on Flash EPROM device
    reliability”, IEEE Transactions on Electron Device, Vol.42, No.1,
    JANUARY 1995, p150.
    [6] T.Sugizaki, et al., “Novel multi-bit SONOS type flash memory using a high-k charge trapping layer”, IEEE Symposium on VLSI Technology Digest of Technical Paper, 2003, p27.
    [7] Yan-Ny Tan, et al.,”Hafnium aluminum oxide as charge storage and
    blocking-oxide layers in SONOS-type nonvolatile memory for
    high-speed operation” IEEE Transactions on Electron Devices, Vol.53,
    No 4, April 2006, p654-662.
    [8] Yan-Ny Tan, et al., ”Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage Layer”, IEEE Transactions on Electron Device ,Vol.51, No.7,p1143, 2004.
    [9] Moon Sig Joo, et al. ”Dependence of Chemical Composition Ratio on
    Electrical Properties of HfO2 Al2O3 Gate Dielectric”, Jpn. J. Appl. Phys.,
    No.3A, p1220-1222, March 2003.
    [10] Chi-Chao Wang, et. al “Enhanced Band-To-Band-Tunneling-Induced Hot - Electron Injection In p-Channel Flash by Band-Gap Offset Modification” IEEE Electron Device Letters, Vol. 27 No 9, September 2006, pp749-751.
    [11] Qingqing Liang, J.D. Cressler, Guofu Niu, R.M. Malladi, K. Newton, D.L. Harame, “A physics-based high-injection transit-time model applied to barrier effects in SiGe HBTs” in IEEE Trans. Electron Devices, Vol. 49, pp. 1807-1813, 2002.
    [12] Wu Lu, Almaz Kuliev, Steven J. Koester, Xie-WenWang, Jack O. Chu, Tso-Ping Ma and Ilesanmi Adesida “High Performance 0.1_m Gate-Length P-Type SiGe MODFET’s and MOS-MODFET’s” in IEEE Trans. Electron Device, pp.1645-1652, 2000.
    [13] Q. Ouyang, X. D. Chen, S. Mudanai, D. L. Kencke, X. Wang, A. F. Tasch, and L. F. Register, and S. K. Banerjee, “Two-Dimensional Bandgap Engineering in a Novel Si/SiGe pMOSFET With Enhanced Device Performance and Scalability” in IEEE SISPAD, pp.151-154, 2000.
    [14] Simon Tam, et al., “Lucky Electron Model of Channel Hot Electron Injection in MOSFET’s” in IEEE Transaction on Electron Device, Vol. ED31, No.9, September 1984.
    [15] Lei Sun, Liyang Pan, and Ying Zeng., “Effect of CHE and CHISEL Program on the Characteristics of SONOS Memory.” in IEEE 2004, p695~698.
    [16] Souvik Mahapatra, S. Shukuri, and Jeff Bude “CHISEL Flash EEPROM—Part I: Performance and Scaling” in IEEE Trans. Electron Devices, Vol. 49, pp.1296-1301, 2002.
    [17] Souvik Mahapatra, S. Shukuri, and Jeff Bude “CHISEL Flash EEPROM—Part II: Reliability” in IEEE Trans. Electron Devices, Vol. 49, pp.1302 -1307, 2002.
    [18] T. Ohnakado, K. Mitsunaga, M. Nunoshita, H. Onoda, K. Sakakibara, N. Tsuji, N. Ajika, M. Hatanaka and H. Miyoshi, “Novel Electron Injection Method Using Band-to-Band Tunneling Induced Hot Electron (BBHE) for Flash Memory with a P-channel Cell” in IEDM Tech. Dig., pp.179-182 1995.
    [19] Takahiro Ohnakado, Hiroshi Onoda, Osamu Sakamoto, Kiyoshi Hayashi, Naho Nishioka, Hiroshi Takada, Kazuyuki Sugahara, Natsuo Ajika, and Shin-ichi Satoh, “Device Characteristics of 0.35 m P-Channel DINOR Flash Memory Using Band-to-Band Tunneling-Induced Hot Electron (BBHE) Programming” in IEEE Trans. Electron Device, Vol. 46,pp. 1866-1871, 1999.
    [20] Kailash Gopalakrishnan, Raymond Woo, Rohit Shenoy, Yusuke Jono, Peter B. Griffin, and James D. Plummer, “Novel Very High IE Structures Based on the Directed BBHE Mechanism for Ultralow-Power Flash Memories”, in IEEE Electron Device Letters, Vol.26, pp. 212-215, 2005.
    [21] S. S. Chung, S. T. Liaw, C. M. Yih, Z. H. Ho, C. J. Lin, D. S. Kuo, and M. S. Liang “N-Channel Versus P-Channel Flash EEPROM Which one has better reliabilities”, in IEEE Annual lnternatlonal Relrablllty Physics Symposium, pp. 67-72, 2001.
    [22] M. Specht, et al., ”Retention time of novel charge trapping memories using Al2O3 dielectrics”, IEEE Symposium on VLSI, p155, 2003.
    [23] L. M. Weltzer and S. K. Banerjee, “Enhanced CHISEL Programming in Flash Memory Devices with SiGe Buried Layer,” Non-Volatile Memory Technology Symposium, pp.31-33, 2004.
    [24] D.L. Kencke, and Xin Wang, “Enhanced secondary electron injection in novel SiGe flash memory devices”2000 IEEE IEDM, p105~108.
    [25] Chi-Chao Wang, and Kuei-Shu Chang-Liao, “Enhanced Band-to Band Tunneling Induced Hot-Electron Injection in_p-Channel Flash by Band-gap Offset Modification”, IEEE Electron Device Letters, Vol. 27, No. 9, Sep 2006.
    [26] Chi-Chao Wang, and Kuei-Shu Chang-Liao, “Enhanced Band-to-Band Tunneling-Induced-Hot-Electron Injection in P-Channel Flash by SiGe Channel and HfO2 Tunnel”, Simulation of Semiconductor Process and Device, Vol. 12 Sep 2007.
    [27] Chee Wee Liu, S. Maikap, “Mobility Enhancement Technologies.” IEEE Circuit & Device Magazine, May/June 2005.
    [28] Subramanian S. Iyer. “Heterojunction bipolar transistors using Si-Ge
    alloys” in IEEE Transactions on Electron Devices, Vol. 36, No. 10,
    October 1989.
    [29] Goutam Kumar Dalapati. “Impact of strained-Si thickness and Ge out-diffusion on gate oxide quality for strained-Si surface channel n-MOSFETs” in IEEE Transaction on Electron Device, Vol. 53, No. 5, May 2006.
    [30] Young-Joe Song, Jung-Wook Lim. “Effects of Si-cap layer thinning and Ge segregation on the characteristics of Si/SiGe/Si heterostructure pMOSFETs” in Solid State Electron, No. 46, 2002, 1983-1989.
    [31] Ya- Chin King, Tsu-Jae King, “Charge-Trap Memory Device Fabricated by Oxidation of Si1-xGex” in IEEE Transactions on Electron Devices, Vol. 48, No. 4, April 2001.
    [32] Douglas J. Paul, “Si / SiGe heterostructures: From material and physics to devices and circuits” in Semiconductor Science and Technology, Vol 19, No 10, October 2004 , pp. R75-R108.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE